• 论文 • 上一篇    下一篇

解无约束优化问题的一个新的带线搜索的信赖域算法

刘景辉1, 马昌凤1, 陈争2   

  1. 1. 福建师范大学数学与计算机科学学院, 福州 350007;
    2. 福建江夏学院信息系, 福州 350108
  • 收稿日期:2011-08-19 出版日期:2012-08-15 发布日期:2012-08-16
  • 基金资助:

    国家自然科学基金(11071041)资助项目.

刘景辉, 马昌凤, 陈争. 解无约束优化问题的一个新的带线搜索的信赖域算法[J]. 计算数学, 2012, 34(3): 275-284.

Liu Jinghui, Ma Changfeng, Chen Zheng. A TRUST REGION ALGORITHM WITH NEW LINE SEARCH FOR SOLVING UNCONSTRAINED OPTIMIZATION PROBLEMS[J]. Mathematica Numerica Sinica, 2012, 34(3): 275-284.

A TRUST REGION ALGORITHM WITH NEW LINE SEARCH FOR SOLVING UNCONSTRAINED OPTIMIZATION PROBLEMS

Liu Jinghui1, Ma Changfeng1, Chen Zheng2   

  1. 1. School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350007, China;
    2. Department of Information, Fujian jiangxia University, Fuzhou 350108, China
  • Received:2011-08-19 Online:2012-08-15 Published:2012-08-16
在传统信赖域方法的基础上, 提出了求解无约束最优化问题的一个新的带线搜索的信赖域算法. 该算法采用大步长 Armijo 线搜索技术获得迭代步长, 克服了每次迭代求解信赖域子问题时计算量较大的缺点, 因而适用于求解大型的优化问题. 在适当的条件下, 我们证明了算法的全局收敛性. 数值实验结果表明本文所提出的算法是有效的.
Based on the traditional trust region method, a trust region algorithm with new line search is proposed for solving unconstrained optimization problems. The stepsize is obtained making use of larger Armijo line search rule. The proposed algorithm overcomes the shortcomings of large amount of calculation when solving the subproblem at each iteration, therefore, it is more attractive for large scale optimization problems. The global convergence of the algorithm is proved under suitable conditions. Some numerical results are reported, which shows that our algorithm is quite effective.

MR(2010)主题分类: 

()
[1] Powell M J D. A New algorithm for unconstrained optimization[C]. Rosen J B Nonlinear Programming.New York: Academic Press, 1970, 31-65.

[2] Nocedal Jorge, Yuan Y X. Combining Trust Region and Line Search Techniques. Technical Report,NAM06, Dept of Computer Science, Northwestern University, Iuinois, USA, 1998.

[3] Nocedal Jorge, Yuan Y X. Combining Trust Region and Line Search Techniques[J]. Advances inNonlinear Programming, 1998, 153-175.

[4] E Michael Gertz. A quasi-Newton trust-region method[J]. Mathematical Programming, 2004,100(3): 447-470.

[5] Shi Z J. Shen J. New inexact line search method for unconstrained optimization[J]. Journal ofOptimization Theory and Applications, 2005, 127(2): 425-445.

[6] 孙清滢, 付小燕等. 基于简单二次函数模型的带线搜索的信赖域算法[J]. 计算数学, 2010, 32(3): 265-274.

[7] 袁功林, 韦增欣. 一个新的BFGS信赖域算法[J]. 广西科学, 2004, 11(3): 195-196.

[8] 时贞军, 孙国. 无约束优化问题的对角稀疏拟牛顿法[J].系统科学与数学, 2006, 26(1): 101-112.

[9] 马昌凤. 最优化理论方法及其Matlab程序设计[M]. 北京: 科学出版社, 2010.

[10] Jorge J More, Burton S Garbow, Kenneth E Hillstrom. Testing Unconstrained OptimizationSoftware[J]. ACM Transactions on Mathematical Software, 1981, 7(1): 17-41.
[1] 马积瑞, 范金燕. 信赖域方法在Hölderian局部误差界下的收敛性质[J]. 计算数学, 2021, 43(4): 484-492.
[2] 尹江华, 简金宝, 江羡珍. 凸约束非光滑方程组一个新的谱梯度投影算法[J]. 计算数学, 2020, 42(4): 457-471.
[3] 张纯, 贾泽慧, 蔡邢菊. 广义鞍点问题的改进的类SOR算法[J]. 计算数学, 2020, 42(1): 39-50.
[4] 王福胜, 张瑞. 不等式约束极大极小问题的一个新型模松弛强次可行SQCQP算法[J]. 计算数学, 2018, 40(1): 49-62.
[5] 刘金魁. 解凸约束非线性单调方程组的无导数谱PRP投影算法[J]. 计算数学, 2016, 38(2): 113-124.
[6] 刘亚君, 刘新为. 无约束最优化的信赖域BB法[J]. 计算数学, 2016, 38(1): 96-112.
[7] 简金宝, 尹江华, 江羡珍. 一个充分下降的有效共轭梯度法[J]. 计算数学, 2015, 37(4): 415-424.
[8] 袁敏, 万中. 求解非线性P0互补问题的非单调磨光算法[J]. 计算数学, 2014, 36(1): 35-50.
[9] 简金宝, 唐菲, 黎健玲, 唐春明. 无约束极大极小问题的广义梯度投影算法[J]. 计算数学, 2013, 35(4): 385-392.
[10] 刘金魁. 两种有效的非线性共轭梯度算法[J]. 计算数学, 2013, 35(3): 286-296.
[11] 范斌, 马昌凤, 谢亚君. 求解非线性互补问题的一类光滑Broyden-like方法[J]. 计算数学, 2013, 35(2): 181-194.
[12] 简金宝, 马鹏飞, 徐庆娟. 不等式约束优化一个基于滤子思想的广义梯度投影算法[J]. 计算数学, 2013, 35(2): 205-214.
[13] 王开荣, 刘奔. 建立在修正BFGS公式基础上的新的共轭梯度法[J]. 计算数学, 2012, 34(1): 81-92.
[14] 江羡珍, 韩麟, 简金宝. Wolfe线搜索下一个全局收敛的混合共轭梯度法[J]. 计算数学, 2012, 34(1): 103-112.
[15] 万中, 冯冬冬. 一类非单调保守BFGS算法研究[J]. 计算数学, 2011, 33(4): 387-396.
阅读次数
全文


摘要