• 论文 • 上一篇
张铁, 李铮
张铁, 李铮. 一阶双曲问题间断有限元的后验误差分析[J]. 计算数学, 2012, 34(2): 215-224.
Zhang Tie, Li Zheng. A POSTERIORI ERROR ANALYSIS OF DISCONTINUOUS GALERKIN METHOD FOR FIRST ORDER HYPERBOLIC PROBLEMS[J]. Mathematica Numerica Sinica, 2012, 34(2): 215-224.
Zhang Tie, Li Zheng
MR(2010)主题分类:
分享此文:
[1] Mekchay K, Nochetto R H. Convergence of adaptive finite element methods for general second order linear elliptic PDEs[J]. SIAM J Numer Anal, 2005, 43: 1803-1827.[2] Yan N N. Superconvergence Analysis and A Posteriori Error Estimation in Finite Element Methods[ M]. Beijing: Science Press, 2008.[3] Houston P, Rannacher R, Süli E. A posteriori error analysis for Stabilized finite element approximations of transport problems[J]. Comput Methods Appl Mech Engrg, 2000, 190: 1483-1508.[4] Houston P, Süli E. hp-adaptive discontinuous Galerkin finite element methods for first-order hyperbolic problems[J]. SIAM J Sci Comput, 2001, 23: 1226-1252.[5] Burnman E. A posteriori error estimation for interior penalty finite element approximations of the advection-reaction equation[J]. SIAM J Numer Anal 2009, 47: 3584-3670.[6] Sangalli G. Robust a posteriori estimators for advection-diffusion-reaction problems[J]. Math Comp, 2008, 77: 41-70.[7] Braess D, Verfürth R. A posteriori error estimators for the Raviart-Thomas element[J]. SIAM J Numer Anal, 1996, 33: 2431-2444.[8] Friedrichs K. Symmetric positive linear differential equations[J]. Comm Pure Appl Math, 1958, 11: 333-418.[9] Reed W H, Hill T R. Triangular mesh methods for neutron transport equation[R]. Tech. Report LA-Ur-73-479, Los Alamos Scientific Laboratory, 1973.[10] Lesaint P, Raviart R A. On a finite element method for solving the neutron transport equation. In: Mathematical Aspects of Finite Elements in Partial Differential Equations[M]. C. de Boor, ed, New York: Academic Press, 1974, 89-145.[11] Johnson C, Pitkaranta J. An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation[J]. Math Comp, 1986, 46: 1-26.[12] Guzman J. Local analysis of discontinuous Galerkin methods applied to singularty perturbed problems[J]. J. Numer. Math., 2006, 14: 41-56.[13] Peterson T E. A note on the convergence of the discontinuous Galerkin method for a scalar hyperbolic equation[J]. SIAM J Numer Anal, 1991, 28: 133-140.[14] 严宁宁, 周爱辉, 林群, 基于特征相关网格的不连续Galerkin法[J], 应用数学与计算数学学报, 1992, 6: 76-83.[15] 林群, 严宁宁, 高效有限元构造与分析[M], 河北大学出版社, 河北, 1996, 119-120.[16] Cockburn B, Dong B, Guzm′an J. Optimal convergence of the original DG method for the transport-reaction equation on special meshes[J]. SIAM J Numer Anal, 2008, 46: 1250-1265.[17] Cockburn B, Dong B, Guzm′an J, Qian J L. Optimal convergence of the original DG method special meshes for variable transport velocity[J]. SIAM J Numer Anal, 2010, 48: 139-146. |
[1] | 祝鹏, 尹云辉, 杨宇博. 奇异摄动问题内罚间断有限方法的最优阶一致收敛性分析[J]. 计算数学, 2013, 35(3): 323-336. |
[2] | 张铁, 冯男, 史大涛. 求解椭圆边值问题惩罚形式的间断有限元方法[J]. 计算数学, 2010, 32(3): 275-284. |
[3] | 孙澈,汤怀民,吴克俭. 一阶双曲问题的间断流线扩散法[J]. 计算数学, 1998, 20(1): 35-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||