• 论文 • 上一篇    下一篇

双调和方程混合元的一种新格式

司红颖1, 陈绍春2   

  1. 1. 商丘师范学院数学系, 河南商丘 476000;
    2. 郑州大学数学系, 郑州 450052
  • 收稿日期:2011-08-29 出版日期:2012-05-15 发布日期:2012-05-20
  • 基金资助:

    国家自然科学基金 (No.11071226).

司红颖, 陈绍春. 双调和方程混合元的一种新格式[J]. 计算数学, 2012, 34(2): 173-182.

Si Hongying, Chen Shaochun. A NEW MIXED FINITE ELEMENT SCHEME FOR THE BIHARMONIC EQUATION[J]. Mathematica Numerica Sinica, 2012, 34(2): 173-182.

A NEW MIXED FINITE ELEMENT SCHEME FOR THE BIHARMONIC EQUATION

Si Hongying1, Chen Shaochun2   

  1. 1. Department of Mathematics, Shangqiu Normal University, Shangqiu 476000, Henan, China;
    2. Department of Mathematics, Zhengzhou University, Zhengzhou 450052, China
  • Received:2011-08-29 Online:2012-05-15 Published:2012-05-20
本文介绍了双调和方程混合元的一种新格式,用双二次多项式逼近流函数,双一次多项式逼近涡函数.在拟一致矩形剖分的条件下,证明了此格式具有与C-R格式中分别用双二次多项式逼近相同的收敛阶.
In this paper, a new mixed finite element scheme for solving the biharmonic equation is introduced, in which bilinear and biquadratic elements are used for approximating the vorticity and the stream function, respectively. Under the conditions that rectangulartion is quasi-uniform, it is proved that the scheme has the same order of accuracy as the standard Ciarlet-Raviart scheme using biquadratic finite elements.

MR(2010)主题分类: 

()
[1] Babuska I. Error-bounds for finite element method[J]. Number. Math, 1971, 16: 322-333.

[2] Brezzi F. On the existence, uniqueness and apporimation of saddle-point problems arising from Lagrangian multipliers[J]. SIAM J. Numer. Anal, 1974, 13: 185-197

[3] 王烈衡, 许学军. 有限元方法的数学基础[M]. 北京: 科学出版社, 2004.

[4] 罗振东. 混合有限元方法基础及其应用[M]. 北京: 科学出版社, 2006.

[5] Ciarlet P G. The finite element method for elliptic problems[M]. North-Holland, Amsterdam, 1978

[6] Falk R S, Osborn J E. Error estimates for mixed methods[J]. RAIRO, Numer, Anal, 1980, 14(3): 249-277.

[7] 李荣华. 边值问题的Galerkin有限元法[M]. 北京: 科学出版社, 2006.

[8] Pang Z Y. Error estimates for mixed finite element methods[J]. Math, Number, Sinica, 1986, 8: 337-344.

[9] Babuska I, Osborn J, Pitkavanta J. Analysis of mixed methods using mesh dependent norms[J]. Math, Comp, 1980, 1039-1062.

[10] 杨一都. RBL有限元插值校正研究的新框架[J]. 数学物理学报, 1994, 14(2): 231-235.
[1] 洪庆国, 刘春梅, 许进超. 一种抽象的稳定化方法及在非线性不可压缩弹性问题上的应用[J]. 计算数学, 2020, 42(3): 298-309.
[2] 张然. 弱有限元方法在线弹性问题中的应用[J]. 计算数学, 2020, 42(1): 1-17.
[3] 王俊俊, 李庆富, 石东洋. 非线性抛物方程混合有限元方法的高精度分析[J]. 计算数学, 2019, 41(2): 191-211.
[4] 曹济伟. 求解二维时谐Maxwell方程的一种混合有限元新格式[J]. 计算数学, 2016, 38(4): 429-441.
[5] 石东洋, 史艳华, 王芬玲. 四阶抛物方程H1-Galerkin混合有限元方法的超逼近及最优误差估计[J]. 计算数学, 2014, 36(4): 363-380.
[6] 李先崇, 孙萍, 安静, 罗振东. 粘弹性方程一种新的分裂正定混合元法[J]. 计算数学, 2013, 35(1): 49-58.
[7] 石东洋, 唐启立, 董晓靖. 强阻尼波动方程的H1-Galerkin混合有限元超收敛分析[J]. 计算数学, 2012, 34(3): 317-328.
[8] 林甲富,林群. Bogner-Fox-Schmit元的超收敛[J]. 计算数学, 2004, 26(1): 47-50.
阅读次数
全文


摘要