李宏1, 罗振东2, 安静3, 孙萍3
李宏, 罗振东, 安静, 孙萍. Sobolev方程的全离散有限体积元格式及数值模拟[J]. 计算数学, 2012, 34(2): 163-172.
Li Hong, Luo Zhendong, An Jing, Sun Ping. A FULLY DISCRETE FINITE VOLUME ELEMENT FORMULATION FOR SOBOLEV EQUATION AND NUMERICAL SIMULATIONS[J]. Mathematica Numerica Sinica, 2012, 34(2): 163-172.
Li Hong1, Luo Zhendong2, An Jing3, Sun Ping3
MR(2010)主题分类:
分享此文:
[1] Barenblett G I, Zheltov I P, Kochian I N. Basic concepts in the theory of homogeneous liquids in fissured rocks[J]. J. Appl. Math. Mech., 1990, 24(5): 1286–1303.[2] 施德明. 非线性湿气迁移方程的边值问题[J]. 应用数学学报, 1990, 13(1): 33--40.[3] Ting T W. A cooling process according to two-temperature theory of heat conduction[J]. J. Math. Anal. Appl., 1974, 45(1): 23–31.[4] Cai Z, McCormick S. On the accuracy of the finite volume element method for diffusion equations on composite grid[J]. SIAM Journal on Numerical Analysis, 1990, 27(3): 636–655.[5] Süli E. Convergence of finite volume schemes for Poisson’s equation on nonuniform meshes[J]. SIAM Journal on Numerical Analysis, 1991, 28(5): 1419–1430.[6] Jones W P, Menziest K R. Analysis of the cell-centred finite volume method for the diffusion equation[J]. Journal of Computational Physics, 2000, 165(1): 45–68.[7] Bank R E, Rose D J. Some error estimates for the box methods[J]. SIAM Journal on Numerical Analysis, 1987, 24(4): 777–787.[8] Li R H, Chen Z Y, Wu W. Generalized Difference Methods for Differential Equations-Numerical Analysis of Finite Volume Methods[M]. Monographs and Textbooks in Pure and Applied Mathematics 226. Marcel Dekker Inc.: New York, 2000.[9] Blanc P, Eymerd R, Herbin R. A error estimate for finite volume methods for the Stokes equations on equilateral triangular meshes[J]. Numerical Methods for Partial Differential Equations, 2004, 20(6): 907–918.[10] Li J, Chen Z X. A new stabilized finite volume method for the stationary Stokes equations[J]. Adv. Comput. Math., 2009, 30(2): 141–152.[11] Shen L H, Li J, Chen Z X. Analysis of stabilized finite volume method for the transient stationary Stokes equations[J]. International Journal of Numerical Analysis and Modeling, 2009, 6(3): 505– 519.[12] 曹艳华. 二维线性Sobolev方程广义差分方法[J]. 计算数学, 2005, 27(3): 243--256.[13] 赵洁. 二维Sobolev方程的有限体积元法[C]. 内蒙古大学硕士论文, 2010.[14] Adams R A. Sobolev Space[M]. New York: Academic Press, 1975.[15] 罗振东. 混合有限元法基础及其应用[M]. 北京: 科学出版社, 2006.[16] Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods[M]. New York: Springer–Verlag, 1991.[17] Ciarlet P G. The Finite Element Method for Elliptic Problems[M]. New York: North–Holland, Amsterdam, 1978.[18] Temam R. Navier–Stokes equations (3rd)[M]. New York: North–Holland, Amsterdam, 1984.[19] Luo Z D, Li H, An J, Sun P. A reduced finite volume element formulation based on POD method and numerical simulation for two-dimensional Sobolev equation[J]. Arch. Comput. Method. Eng., 2011 (in press). |
[1] | 高兴华, 李宏, 刘洋. 分布阶扩散—波动方程的有限元解的误差估计[J]. 计算数学, 2021, 43(4): 493-505. |
[2] | 陈明卿, 谢小平. 随机平面线弹性问题的一类弱Galerkin方法[J]. 计算数学, 2021, 43(3): 279-300. |
[3] | 董自明, 李宏, 赵智慧, 唐斯琴. 对流扩散反应方程的局部投影稳定化连续时空有限元方法[J]. 计算数学, 2021, 43(3): 367-387. |
[4] | 曾玉平, 翁智峰, 胡汉章. 简化摩擦接触问题的对称弱超内罚间断Galerkin方法的先验和后验误差估计[J]. 计算数学, 2021, 43(2): 162-176. |
[5] | 房明娟, 阳莺, 唐鸣. 稳态Poisson-Nernst-Planck方程的残量型后验误差估计[J]. 计算数学, 2021, 43(1): 17-32. |
[6] | 王然, 张怀, 康彤. 求解带有非线性边界条件的涡流方程的A-φ解耦有限元格式[J]. 计算数学, 2021, 43(1): 33-55. |
[7] | 唐斯琴, 李宏, 董自明, 赵智慧. 对流反应扩散方程的稳定化时间间断时空有限元解的误差估计[J]. 计算数学, 2020, 42(4): 472-486. |
[8] | 关宏波, 洪亚鹏. 抛物型界面问题的变网格有限元方法[J]. 计算数学, 2020, 42(2): 196-206. |
[9] | 何斯日古楞, 李宏, 刘洋, 方志朝. 非稳态奇异系数微分方程的时间间断时空有限元方法[J]. 计算数学, 2020, 42(1): 101-116. |
[10] | 贾仲孝, 孙晓琳. 计算矩阵函数双线性形式的Krylov子空间算法的误差分析[J]. 计算数学, 2020, 42(1): 117-130. |
[11] | 王俊俊, 李庆富, 石东洋. 非线性抛物方程混合有限元方法的高精度分析[J]. 计算数学, 2019, 41(2): 191-211. |
[12] | 王芬玲, 樊明智, 赵艳敏, 史争光, 石东洋. 多项时间分数阶扩散方程各向异性线性三角元的高精度分析[J]. 计算数学, 2018, 40(3): 299-312. |
[13] | 武海军. 高波数Helmholtz方程的有限元方法和连续内罚有限元方法[J]. 计算数学, 2018, 40(2): 191-213. |
[14] | 葛志昊, 吴慧丽. 体积约束的非局部扩散问题的后验误差分析[J]. 计算数学, 2018, 40(1): 107-116. |
[15] | 程强, 熊向团. 时间分数次扩散方程反演源项问题的迭代正则化方法[J]. 计算数学, 2017, 39(3): 295-308. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||