• 论文 • 上一篇    下一篇

Sobolev方程的全离散有限体积元格式及数值模拟

李宏1, 罗振东2, 安静3, 孙萍3   

  1. 1. 内蒙古大学数学科学学院, 呼和浩特 010021;
    2. 华北电力大学数理学院, 北京 102206;
    3. 贵州师范大学数学与计算机科学学院, 贵阳 550001
  • 收稿日期:2011-07-05 出版日期:2012-05-15 发布日期:2012-05-20
  • 基金资助:

    国家自然科学基金(批准号: 11061009和11061021)、河北省自然科学基金(批准号: A2010001663)、贵州省科技计划项目(批准号: 黔科合J字[2011]2367)和内蒙古自治区高等学校研究项目(批准号: NJ10006)资助.

李宏, 罗振东, 安静, 孙萍. Sobolev方程的全离散有限体积元格式及数值模拟[J]. 计算数学, 2012, 34(2): 163-172.

Li Hong, Luo Zhendong, An Jing, Sun Ping. A FULLY DISCRETE FINITE VOLUME ELEMENT FORMULATION FOR SOBOLEV EQUATION AND NUMERICAL SIMULATIONS[J]. Mathematica Numerica Sinica, 2012, 34(2): 163-172.

A FULLY DISCRETE FINITE VOLUME ELEMENT FORMULATION FOR SOBOLEV EQUATION AND NUMERICAL SIMULATIONS

Li Hong1, Luo Zhendong2, An Jing3, Sun Ping3   

  1. 1. School of Mathematical Sciences, Inner Mongolia University, Huhhot 010021, China;
    2. School of Mathematics and Physics, North China Electric Power University, Beijing 102206, China;
    3. School of Mathematics and Computer Science, Guizhou Normal University, Guiyang, 550001, China
  • Received:2011-07-05 Online:2012-05-15 Published:2012-05-20
本文研究二维Sobolev方程的有限体积元方法, 给出一种全离散化有限体积元格式及其有限体积元解的误差估计,并用数值例子说明数值计算的结果与理论结果是相吻合的, 进一步说明了有限体积元方法比其他数值方法更优越.
In this paper, a finite volume element method for 2D Sobolev equation is studied and a fully discrete finite volume element formulation and error estimates are derived. Some numerical examples illustrate the fact that the results of numerical computation are consistent with theoretical conclusions. Moreover, it is shown that the finite volume element method is more advantageous than others for finding numerical solutions of Sobolev equation.

MR(2010)主题分类: 

()
[1] Barenblett G I, Zheltov I P, Kochian I N. Basic concepts in the theory of homogeneous liquids in fissured rocks[J]. J. Appl. Math. Mech., 1990, 24(5): 1286–1303.

[2] 施德明. 非线性湿气迁移方程的边值问题[J]. 应用数学学报, 1990, 13(1): 33--40.

[3] Ting T W. A cooling process according to two-temperature theory of heat conduction[J]. J. Math. Anal. Appl., 1974, 45(1): 23–31.

[4] Cai Z, McCormick S. On the accuracy of the finite volume element method for diffusion equations on composite grid[J]. SIAM Journal on Numerical Analysis, 1990, 27(3): 636–655.

[5] Süli E. Convergence of finite volume schemes for Poisson’s equation on nonuniform meshes[J]. SIAM Journal on Numerical Analysis, 1991, 28(5): 1419–1430.

[6] Jones W P, Menziest K R. Analysis of the cell-centred finite volume method for the diffusion equation[J]. Journal of Computational Physics, 2000, 165(1): 45–68.

[7] Bank R E, Rose D J. Some error estimates for the box methods[J]. SIAM Journal on Numerical Analysis, 1987, 24(4): 777–787.

[8] Li R H, Chen Z Y, Wu W. Generalized Difference Methods for Differential Equations-Numerical Analysis of Finite Volume Methods[M]. Monographs and Textbooks in Pure and Applied Mathematics 226. Marcel Dekker Inc.: New York, 2000.

[9] Blanc P, Eymerd R, Herbin R. A error estimate for finite volume methods for the Stokes equations on equilateral triangular meshes[J]. Numerical Methods for Partial Differential Equations, 2004, 20(6): 907–918.

[10] Li J, Chen Z X. A new stabilized finite volume method for the stationary Stokes equations[J]. Adv. Comput. Math., 2009, 30(2): 141–152.

[11] Shen L H, Li J, Chen Z X. Analysis of stabilized finite volume method for the transient stationary Stokes equations[J]. International Journal of Numerical Analysis and Modeling, 2009, 6(3): 505– 519.

[12] 曹艳华. 二维线性Sobolev方程广义差分方法[J]. 计算数学, 2005, 27(3): 243--256.

[13] 赵洁. 二维Sobolev方程的有限体积元法[C]. 内蒙古大学硕士论文, 2010.

[14] Adams R A. Sobolev Space[M]. New York: Academic Press, 1975.

[15] 罗振东. 混合有限元法基础及其应用[M]. 北京: 科学出版社, 2006.

[16] Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods[M]. New York: Springer–Verlag, 1991.

[17] Ciarlet P G. The Finite Element Method for Elliptic Problems[M]. New York: North–Holland, Amsterdam, 1978.

[18] Temam R. Navier–Stokes equations (3rd)[M]. New York: North–Holland, Amsterdam, 1984.

[19] Luo Z D, Li H, An J, Sun P. A reduced finite volume element formulation based on POD method and numerical simulation for two-dimensional Sobolev equation[J]. Arch. Comput. Method. Eng., 2011 (in press).
[1] 高兴华, 李宏, 刘洋. 分布阶扩散—波动方程的有限元解的误差估计[J]. 计算数学, 2021, 43(4): 493-505.
[2] 陈明卿, 谢小平. 随机平面线弹性问题的一类弱Galerkin方法[J]. 计算数学, 2021, 43(3): 279-300.
[3] 董自明, 李宏, 赵智慧, 唐斯琴. 对流扩散反应方程的局部投影稳定化连续时空有限元方法[J]. 计算数学, 2021, 43(3): 367-387.
[4] 曾玉平, 翁智峰, 胡汉章. 简化摩擦接触问题的对称弱超内罚间断Galerkin方法的先验和后验误差估计[J]. 计算数学, 2021, 43(2): 162-176.
[5] 房明娟, 阳莺, 唐鸣. 稳态Poisson-Nernst-Planck方程的残量型后验误差估计[J]. 计算数学, 2021, 43(1): 17-32.
[6] 王然, 张怀, 康彤. 求解带有非线性边界条件的涡流方程的A-φ解耦有限元格式[J]. 计算数学, 2021, 43(1): 33-55.
[7] 唐斯琴, 李宏, 董自明, 赵智慧. 对流反应扩散方程的稳定化时间间断时空有限元解的误差估计[J]. 计算数学, 2020, 42(4): 472-486.
[8] 关宏波, 洪亚鹏. 抛物型界面问题的变网格有限元方法[J]. 计算数学, 2020, 42(2): 196-206.
[9] 何斯日古楞, 李宏, 刘洋, 方志朝. 非稳态奇异系数微分方程的时间间断时空有限元方法[J]. 计算数学, 2020, 42(1): 101-116.
[10] 贾仲孝, 孙晓琳. 计算矩阵函数双线性形式的Krylov子空间算法的误差分析[J]. 计算数学, 2020, 42(1): 117-130.
[11] 王俊俊, 李庆富, 石东洋. 非线性抛物方程混合有限元方法的高精度分析[J]. 计算数学, 2019, 41(2): 191-211.
[12] 王芬玲, 樊明智, 赵艳敏, 史争光, 石东洋. 多项时间分数阶扩散方程各向异性线性三角元的高精度分析[J]. 计算数学, 2018, 40(3): 299-312.
[13] 武海军. 高波数Helmholtz方程的有限元方法和连续内罚有限元方法[J]. 计算数学, 2018, 40(2): 191-213.
[14] 葛志昊, 吴慧丽. 体积约束的非局部扩散问题的后验误差分析[J]. 计算数学, 2018, 40(1): 107-116.
[15] 程强, 熊向团. 时间分数次扩散方程反演源项问题的迭代正则化方法[J]. 计算数学, 2017, 39(3): 295-308.
阅读次数
全文


摘要