陈小山
陈小山. 用矩阵符号函数解(广义)周期Sylvester方程[J]. 计算数学, 2012, 34(2): 153-162.
Chen Xiaoshan. SOLVING THE (GENERALIZED) PERIODIC SYLVESTER EQUATION WITH THE MATRIX SIGN FUNCTION[J]. Mathematica Numerica Sinica, 2012, 34(2): 153-162.
Chen Xiaoshan
MR(2010)主题分类:
分享此文:
[1] 徐树方, 高立, 张平文. 数值线性代数[M]. 北京: 北京大学出版社, 2000.[2] 徐树方. 控制论中的矩阵计算[M]]. 北京: 高等教育出版社, 2011.[3] Byers R. Solving the algebraic Riccati equation with the matrix sign function[J]. Linear Algebra and its Applications, 1987, 85: 267-279.[4] Benner P and Quintana-Orti E. Solving stable generalized Lyapunov equations with the matrix sign function[J]. Numerical Algorigthms, 1999, 20: 75-100.[5] Benner P, Quintana-Orti E and Quintana-Orti G. Solving stable Sylvester equations via rational iterative schemes[J]. Journal of Scientific Computing, 2006, 28: 51-83.[6] Chen X S, Li W and Ching W K. Perturbation analysis for the sign functions of regular matrix pairs[J]. Numerical Linear Algebra with Applications, 2011, 18: 189-203.[7] Chen X S. Perturbation bounds for the periodic Schur decomposition[J]. BIT Numerical Mathematics, 2010, 50: 41-58.[8] Golub G H, Nash S and Van Loan C F. A Hessenberg-Schur method for the matrix problem AX +XB = C[J]. IEEE Transactions on Automatic Control, 1979, 24: 909-913.[9] Granat R and Kagstrom B. Direct eigenvalue reordering in a product of matrices in periodic Schur form[J]. SIAM Journal on Matrix Analysis and Applications, 2006, 28: 285-300.[10] Granat R, Kagstrom B and Kressner D. Computing periodic deflating subspaces associated with a specified set of eigenvalues[J]. BIT Numerical Mathematics, 2007, 47: 763-791.[11] Hench J J, Laub A J. Numerical solution of the discrete-time periodic Riccati equation[J]. IEEE Transactions on Automatic Control, 1994, 39: 1197-1210.[12] Kenney C S and Laub A J. The matrix sign function[J]. IEEE Transactions on Automatic Control, 1995, 40: 1330-1348.[13] Kagstrom B and Westin L. Generalized Schur methods with condition estimators for solving the generalized Sylvester Equation[J]. IEEE Transactions on Automatic Control, 1989, 34: 745-751.[14] Roberts J D. Linear model reduction and solution of the algebraic Ricatti equation by use of the sign function[J]. International Journal of Control, 1980, 32: 677-687.[15] Varga A. Periodic Lyapunov equations: some applications and new algorighthms[J]. International Journal of Control, 1997, 67: 69-87. |
[1] | 裕静静, 江平, 刘植. 两类五阶解非线性方程组的迭代算法[J]. 计算数学, 2017, 39(2): 151-166. |
[2] | 温朝涛, 陈小山. 矩阵极分解新的数值方法[J]. 计算数学, 2017, 39(1): 23-32. |
[3] | 刘晴, 檀结庆, 张旭. 一种基于Chebyshev迭代解非线性方程组的方法[J]. 计算数学, 2015, 37(1): 14-20. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||