• 论文 • 上一篇    下一篇

用矩阵符号函数解(广义)周期Sylvester方程

陈小山   

  1. 华南师范大学数学科学学院, 广州 510631
  • 收稿日期:2011-06-30 出版日期:2012-05-15 发布日期:2012-05-20
  • 基金资助:

    高等学校博士学科点专项科研基金项目(20104407110001),中山大学广东省计算科学重点实验室开放基金项目(201106005), 省科技攻关项目(2011B010200027)和省自然科学基金项目(S2011040003243).

陈小山. 用矩阵符号函数解(广义)周期Sylvester方程[J]. 计算数学, 2012, 34(2): 153-162.

Chen Xiaoshan. SOLVING THE (GENERALIZED) PERIODIC SYLVESTER EQUATION WITH THE MATRIX SIGN FUNCTION[J]. Mathematica Numerica Sinica, 2012, 34(2): 153-162.

SOLVING THE (GENERALIZED) PERIODIC SYLVESTER EQUATION WITH THE MATRIX SIGN FUNCTION

Chen Xiaoshan   

  1. School of Mathematics, South China Normal University, Guangzhou 510631, China
  • Received:2011-06-30 Online:2012-05-15 Published:2012-05-20
(广义)周期Sylvester方程来源于周期离散线性系统. 本文主要研究这类方程满足特征值分别位于开左半复平面和开右半复平面或位于单位圆周内和单位圆周外条件时用矩阵符号函数求解的数值方法.并通过数值例子说明我们的结论.
The (generalized) periodic Sylvester equation arises from linear periodic discrete-time systems. This paper is devoted to use the matrix sign function to solve (generalized) periodic Sylvester equations, which eigenvalues are contained in the open left half complex plane and the open right half complex plane or inside the unit circle and outside the unit circle. A numerical example illustrates our results.

MR(2010)主题分类: 

()
[1] 徐树方, 高立, 张平文. 数值线性代数[M]. 北京: 北京大学出版社, 2000.

[2] 徐树方. 控制论中的矩阵计算[M]]. 北京: 高等教育出版社, 2011.

[3] Byers R. Solving the algebraic Riccati equation with the matrix sign function[J]. Linear Algebra and its Applications, 1987, 85: 267-279.

[4] Benner P and Quintana-Orti E. Solving stable generalized Lyapunov equations with the matrix sign function[J]. Numerical Algorigthms, 1999, 20: 75-100.

[5] Benner P, Quintana-Orti E and Quintana-Orti G. Solving stable Sylvester equations via rational iterative schemes[J]. Journal of Scientific Computing, 2006, 28: 51-83.

[6] Chen X S, Li W and Ching W K. Perturbation analysis for the sign functions of regular matrix pairs[J]. Numerical Linear Algebra with Applications, 2011, 18: 189-203.

[7] Chen X S. Perturbation bounds for the periodic Schur decomposition[J]. BIT Numerical Mathematics, 2010, 50: 41-58.

[8] Golub G H, Nash S and Van Loan C F. A Hessenberg-Schur method for the matrix problem AX +XB = C[J]. IEEE Transactions on Automatic Control, 1979, 24: 909-913.

[9] Granat R and Kagstrom B. Direct eigenvalue reordering in a product of matrices in periodic Schur form[J]. SIAM Journal on Matrix Analysis and Applications, 2006, 28: 285-300.

[10] Granat R, Kagstrom B and Kressner D. Computing periodic deflating subspaces associated with a specified set of eigenvalues[J]. BIT Numerical Mathematics, 2007, 47: 763-791.

[11] Hench J J, Laub A J. Numerical solution of the discrete-time periodic Riccati equation[J]. IEEE Transactions on Automatic Control, 1994, 39: 1197-1210.

[12] Kenney C S and Laub A J. The matrix sign function[J]. IEEE Transactions on Automatic Control, 1995, 40: 1330-1348.

[13] Kagstrom B and Westin L. Generalized Schur methods with condition estimators for solving the generalized Sylvester Equation[J]. IEEE Transactions on Automatic Control, 1989, 34: 745-751.

[14] Roberts J D. Linear model reduction and solution of the algebraic Ricatti equation by use of the sign function[J]. International Journal of Control, 1980, 32: 677-687.

[15] Varga A. Periodic Lyapunov equations: some applications and new algorighthms[J]. International Journal of Control, 1997, 67: 69-87.
[1] 裕静静, 江平, 刘植. 两类五阶解非线性方程组的迭代算法[J]. 计算数学, 2017, 39(2): 151-166.
[2] 温朝涛, 陈小山. 矩阵极分解新的数值方法[J]. 计算数学, 2017, 39(1): 23-32.
[3] 刘晴, 檀结庆, 张旭. 一种基于Chebyshev迭代解非线性方程组的方法[J]. 计算数学, 2015, 37(1): 14-20.
阅读次数
全文


摘要