• 论文 • 上一篇    下一篇

截断策略下求解第一类积分方程离散的DSM方法

罗兴钧1, 陈维君1, 范林秀1, 李繁春2   

  1. 1. 赣南师范学院数学与计算机科学学院, 江西赣州 341000;
    2. 江西应用技术职业学院 基础教学部, 江西赣州 341000
  • 收稿日期:2011-04-19 出版日期:2012-05-15 发布日期:2012-05-20
  • 基金资助:

    国家自然科学基金资助项目(11061001)、 江西省自然科学基金资助项目(20114BAB201014)、江西省教育厅科学技术研究资助项目(GJJ10586).

罗兴钧, 陈维君, 范林秀, 李繁春. 截断策略下求解第一类积分方程离散的DSM方法[J]. 计算数学, 2012, 34(2): 139-152.

Luo Xingjun, Chen Weijun, Fan Linxiu, Li Fanchun. THE DISCRETIZATION OF THE DSM METHODS FOR SOLVING THE ILL-POSED INTEGRAL EQUATION OF THE FIRST KIND BASED ON THE TRUNCATED STRATEGY[J]. Mathematica Numerica Sinica, 2012, 34(2): 139-152.

THE DISCRETIZATION OF THE DSM METHODS FOR SOLVING THE ILL-POSED INTEGRAL EQUATION OF THE FIRST KIND BASED ON THE TRUNCATED STRATEGY

Luo Xingjun1, Chen Weijun1, Fan Linxiu1, Li Fanchun2   

  1. 1. School of Mathematics and computer science, GanNan Normal University, Ganzhou 341000, Jiangxi, China;
    2. Department of Basic Teaching Ministry, Jiangxi Vocational College of Applied Technology, Ganzhou 341000, Jiangxi, China
  • Received:2011-04-19 Online:2012-05-15 Published:2012-05-20
本文用多尺度投影方法求解离散的DSM问题,与传统全投影方法相比, 减少了内积计算个数, 保持了最优收敛率.最后, 算例说明了算法的有效性.
In this paper, we develop a fast multiscale projection method to solve the discretization of the DSM problem. Compared with the traditional projection technique, we keep the optimal convergence rate, but less than the number of inner products calculation. Finally, numerical experiments are given to illustrate the efficiency of the method.

MR(2010)主题分类: 

()
[1] Plato R, Vainikko G. On the regularization of projection methods for solving ill-posed problems[J]. Numer. Math., 1990, 57: 63-79.

[2] Pereverzev S V. Optimization of projection methods for solving ill-posed problems[J]. Computing, 1995, 55: 113-124.

[3] Maa? P, Pereverzev S V. An adaptive discretization for Tikhonov-Phillips regularization with a posteriori parameter selection[J]. Numerische Mathematik, 2001, 87: 485-502.

[4] Rajan M P. A posteriori parameter choice with an efficient discretization scheme for solving illposed problems[J]. Applied Mathematics and Computation, 2008, 204 (2): 891-904.

[5] Solodky S G. On a quasi-optimal regularized projection method for solving operator equations of the first kind[J]. Inverse Problem, 2005, 21: 1473-1485.

[6] Luo X J, Li F C. An optimal regularized projection method for solving ill-posed problems via dynamical systems method[J]. J. Math. Anal. Appl., 2010, 370: 379-391.

[7] Ramm A G. Dynamical systems method for solving operator equations[J]. Communic. in Nonlinear Sci. and Numer. Simulation, 2004, 9 (2): 383-402.

[8] Jin Q N, Hou Z Y. Asymptotic regularization methods for ill-posed linear problems[J]. Chinese Ann. Math. Ser. A, 1999, 20 (3): 365-374 (in Chinese).

[9] Chen Z Y, Xu Y S and Yang H Q. Fast collocation methods for solving ill-posed integral equations of the first kind[J]. Inverse Problem, 2008, 24: 065007.

[10] Chen Z Y, Cheng S and Yang H. Fast multilevel augmentation methods with compression technique for solving ill-posed integral equations[J]. Journal of Integral Equation and Application, 2011, 23 (1): 39-70.

[11] Luo X J, Li F C. A posteriori parameter choice strategy for fast multiscale method solving ill-posed integral equations[J]. Adv. Comput. Math., 2012, 36: 299-314.

[12] 罗兴钧, 李繁春, 杨素华. 最优投影策略下解病态积分方程的快速迭代算法[J]. 《计算数学》, 2011, 33 (1): 1-14.

[13] Micchelli C A and Xu Y. Using the matrix refinement equation for the construction of wavelets on invariant sets[J]. Appl. Comput. Harmon. Anal., 1994, 1: 391-401.

[14] Micchelli C A and Xu Y. Reconstruction and decomposition algorithms for biorthogonal multiwavelets[ J]. Multidimens. Syst. Signal Process., 1997, 8: 31-69.
[1] 李繁春, 杨素华, 罗兴钧, 彭玉兵. 求解第一类Fredholm积分方程的多层迭代算法[J]. 计算数学, 2013, 35(3): 225-238.
[2] 罗兴钧, 李繁春, 杨素华. 最优投影策略下解病态积分方程的快速迭代算法[J]. 计算数学, 2011, 33(1): 1-14.
阅读次数
全文


摘要