• 论文 •

### Wolfe线搜索下一个全局收敛的混合共轭梯度法

1. 1. 玉林师范学院数学与信息科学学院, 广西玉林 537000;
2. 广西大学数学与信息科学学院, 南宁 530004
• 收稿日期:2011-07-25 出版日期:2012-02-15 发布日期:2012-02-21
• 通讯作者: 简金宝 E-mail:jianjb@gxu.edu.cn.
• 基金资助:

国家自然科学基金(71061002); 广西自然科学基金 (2011GXNSFD018022, 0832025).

Jiang Xianzhen, Han Lin, Jian Jinbao. A GLOBALLY CONVERGENT MIXED CONJUGATE GRADIENT METHOD WITH WOLFE LINE SEARCH[J]. Mathematica Numerica Sinica, 2012, 34(1): 103-112.

### A GLOBALLY CONVERGENT MIXED CONJUGATE GRADIENT METHOD WITH WOLFE LINE SEARCH

Jiang Xianzhen1, Han Lin2, Jian Jinbao2

1. 1. College of Mathematics and Information Science, Yulin Normal University, Yulin 537000, Guangxi, China;
2. College of Mathematics and Information Science, Guangxi University, Nanning 530004, China
• Received:2011-07-25 Online:2012-02-15 Published:2012-02-21

In this paper, a new mixed conjugate gradient method is proposed for unconstrained optimization. Under Wolfe inexact line search, the descent property and the global convergence of the proposed method are proved. Some elementary numerical experiments are reported, and which show that the proposed method is promising.

MR(2010)主题分类:

()
 [1] Fletcher R, Reeves C. Function minimization by conjugate gradients[J]. Computer Journal, 1964, 7: 149-154.[2] Polak E, Ribiére G. Note surla convergence de directions conjugées[J]. Rev. Francaise Informat Recherche Operationelle 3e Année, 1969, 16(3): 35-43.[3] Polyak B T. The conjugate gradient method in extreme problems[J]. USSR Computational Mathematics and Mathematical Physics, 1969, 9: 94-112.[4] Hestenes M R, Stiefel E. Method of conjugate gradient for solving linear equations[J]. Journal of Research of National Bureau of Standards, 1952, 49: 409-436.[5] Dai Y H, Yuan Y X. A nonlinear conjugate gradient method with a strong global convergence property[J]. SIAM Journal on Optimization, 1999, 10: 177-182.[6] Yao S W, Wei Z X and Huang H. A note about WYL’s conjugate gradient method and its application[J]. Applied Mathematics and computation, 2007, 191: 381-388.[7] Zhang L. An imporoved Wei-Yao-Liu nonlinear conjugate gradient method for optimization computation[ J]. Applied Mathematics and computation, 2009, 215: 2269-2274.[8] Yuan G L, Lu X W. A modified PRP conjugate gradient method[J]. Annals of Operations Research, 2009, 166: 73-90.[9] 江羡珍, 马国栋,简金宝. Wolfe 线搜索下一个新的全局收敛共轭梯度法[J]. 工程数学学报, 2011, 28(6): 779-786.[10] 戴彧虹, 袁亚湘. 非线性共轭梯度法[M], 上海:上海科学技术出版杜, 2000.[11] Dai Y H, Yuan Y X. An efficient hybrid conjugate gradient method for unconstrained optimization[ J]. Annals of Operations Research, 2001, 103: 33-47.[12] 戴志锋,陈兰平. 一种混合的HS-DY共轭梯度法[J]. 计算数学,2005, 27(4): 429-436.[13] Moré J J, Garbow B S and Hillstrome K E. Testing unconstrained optimization software[J]. ACM Transactions on Mathematical Software, 1981, 7: 17-41.
 [1] 刘金魁, 孙悦, 赵永祥. 凸约束伪单调方程组的无导数投影算法[J]. 计算数学, 2021, 43(3): 388-400. [2] 尹江华, 简金宝, 江羡珍. 凸约束非光滑方程组一个新的谱梯度投影算法[J]. 计算数学, 2020, 42(4): 457-471. [3] 吴敏华, 李郴良. 求解带Toeplitz矩阵的线性互补问题的一类预处理模系矩阵分裂迭代法[J]. 计算数学, 2020, 42(2): 223-236. [4] 张纯, 贾泽慧, 蔡邢菊. 广义鞍点问题的改进的类SOR算法[J]. 计算数学, 2020, 42(1): 39-50. [5] 王福胜, 张瑞. 不等式约束极大极小问题的一个新型模松弛强次可行SQCQP算法[J]. 计算数学, 2018, 40(1): 49-62. [6] 刘金魁. 解凸约束非线性单调方程组的无导数谱PRP投影算法[J]. 计算数学, 2016, 38(2): 113-124. [7] 刘亚君, 刘新为. 无约束最优化的信赖域BB法[J]. 计算数学, 2016, 38(1): 96-112. [8] 简金宝, 尹江华, 江羡珍. 一个充分下降的有效共轭梯度法[J]. 计算数学, 2015, 37(4): 415-424. [9] 张凯院, 牛婷婷, 聂玉峰. 一类非线性矩阵方程对称解的双迭代算法[J]. 计算数学, 2014, 36(1): 75-84. [10] 袁敏, 万中. 求解非线性P0互补问题的非单调磨光算法[J]. 计算数学, 2014, 36(1): 35-50. [11] 简金宝, 唐菲, 黎健玲, 唐春明. 无约束极大极小问题的广义梯度投影算法[J]. 计算数学, 2013, 35(4): 385-392. [12] 刘金魁. 两种有效的非线性共轭梯度算法[J]. 计算数学, 2013, 35(3): 286-296. [13] 范斌, 马昌凤, 谢亚君. 求解非线性互补问题的一类光滑Broyden-like方法[J]. 计算数学, 2013, 35(2): 181-194. [14] 简金宝, 马鹏飞, 徐庆娟. 不等式约束优化一个基于滤子思想的广义梯度投影算法[J]. 计算数学, 2013, 35(2): 205-214. [15] 潘克家, 胡宏伶, 陈传淼, 汤井田. 外推瀑布式多网格法的OpenMP并行化[J]. 计算数学, 2012, 34(4): 425-436.