• 论文 • 上一篇    下一篇

解Burgers方程的一种显式稳定性方法

孙建强,秦孟兆,   

  1. 北京应用物理与计算数学研究所,中国科学院 数学与系统科学研究院,计算数学研究所,,北京 100088,北京 100080
  • 出版日期:2007-01-14 发布日期:2007-01-14

孙建强,秦孟兆,. 解Burgers方程的一种显式稳定性方法[J]. 计算数学, 2007, 29(1): 67-72.

A KIND OF EXPLICIT STABLE METHOD TO SOLVE THE BURGERS EQUATION

  1. Sun Jianqiang (Institute of Applied Physics and Computational Mathematics, Beijing 100088, China) Qin Mengzhao (Institute of Computational Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, China)
  • Online:2007-01-14 Published:2007-01-14
拟线性Burgers方程在空间离散后转化成常微分方程,再用指数积分方法求解.数值结果表明指数积分法有显式稳定性,有相应Runge-Kutta方法相同的精度.
Spatial discretization of the quasi-linear Burgers equation leads to a system of ordinarily differential equations, which can be solved by the exponential integral method. Numerical results show that the exponential integral method has explicit stability, and has the same accuracy as the corresponding Runge-Kutta method.
()

[1] Ozis T, Aksan E N, Ozdes A. A finite element approach for solution of Burgers' equation. Applied Mathematics and Computation, 2003 (139): 417-428.
[2]唐晨,张桂敏,李文润.不同层显式格式及在微尺度热传导中的应用,计算物理,2004(4):335-340.
[3] Feng K, Symplectic algorithms for Hamiltonian systems, Collected works of Feng Kang (Ⅱ).
[4] Iserlse A, Munthe-Kaas H Z, Nφrsett S P, Zanna A. Lie-group methods. Acta Numerica, 2000 : 215-365.
[5] Bieterman M, Babuska I. The finite element method for parabolic equations, (Ⅰ) a posteriori estimation, Numer. Math., 1982 (40): 339-371.
[6] Hong J, Lin Y. A novel numerical approach to simulate nonlinear Schrodinger equation with varing coefficients. Applied Mathematical Letter, 2003 (16): 759-765.
[7] Sun Jianqiang, Ma Zhongqi, Qin Mengzhao, RKMK method of solving non-damping LL equations and ferromagnet chain equations. Applied Mathematics and Computation, 2004 (157): 407-424.
[8] Zanna A, Munthe-Kaas H Z. Generalized Polar Decompositions for the Approximation of the Matrix Exponential. SIAM J Matrix. Anal. Appl., 2002, 23(3): 840-862.
No related articles found!
阅读次数
全文


摘要