• 论文 •    下一篇

一类求解奇异延迟微分方程的两步连续Runge-Kutta方法的收敛性

冷欣,刘德贵,宋晓秋,陈丽容,   

  1. 北京计算机应用与仿真技术研究所,北京计算机应用与仿真技术研究所,北京计算机应用与仿真技术研究所,北京计算机应用与仿真技术研究所 北京 100854 北京应用物理与计算数学研究所,北京 100088,北京 100854 北京应用物理与计算数学研究所,北京 100088,北京 100854,北京 100854
  • 出版日期:2006-01-14 发布日期:2006-01-14

冷欣,刘德贵,宋晓秋,陈丽容,. 一类求解奇异延迟微分方程的两步连续Runge-Kutta方法的收敛性[J]. 计算数学, 2006, 28(1): 1-12.

THE CONVERGENCE OF A CLASS OF TWO-STEP CONTINUITY RUNGE-KUTTA METHODS FOR SOLVING SINGULAR DELAY DIFFERENTIAL EQUATIONS

  1. Leng Xin Liu Degui (Beijing Institute of Computer Application and Simulation Technology, Beijing 100854, China; Beijing Institute of Applied Physics and Computational Mathematics, Beijing 100088, China) Song Xiaoqiu Chen Lirong (Beijing Institute of Computer Application and Simulation Technology, Beijing 100854, China)
  • Online:2006-01-14 Published:2006-01-14
本文给出了一类求解延迟落在当前积分步内延迟微分方程的两步连续Runge-Kutta方法。在一定条件下我们证明了方法收敛性,数值试验表明方法是有效的。
In this paper, a class of two-step continuity Runge-Kutta(TSCRK) methods for solving delay differential equations where delay lies in the span of the current step is presented. Under certain conditions, we prove the convergence property of the method. Some examples show the efficiency of the method.
()

[1] W.H. Enright and Min Hu, Interpolating Runge-Kutta methods for vanishing delay differential equations, Computing, 55 (1995), 223-236.
[2] C.T.H. Baker, C.A.H. Paul, parallel continuous Runge-Kutta methods and vanishing lag delay differential equations, Adv. Comput. Math.,1(1993), 367-394.
[3] E. Hairer, G.Wanner, Order conditions for general Two-Step Runge-Kutta Methods, SIAM J. Num. Anal., 34 (1997), 2087-2089.
[4] E. Hairer, S.P.N0rsett and G.Wanner, Solving Ordinary Differential Equations I. Non-stiff problems, Springer Series in Computational Mathematics 8, Springer-Verlag Berlin Heidelberg, 1987, second Revised Edition, 1993.
[5] N.H. Abel, Untersuchngen uber die Reihe, Crelle J.f.d.r.u. angew. Math., 1(1826), 311-339.
[6]李寿佛,刚性微分方程算法理论,长沙:湖南科学技术出版社,1997.
No related articles found!
阅读次数
全文


摘要