• 论文 • 上一篇    下一篇

刚性延迟积分微分方程单支方法的B-收敛性

余越昕,文立平,李寿佛   

  1. 湘潭大学数学系,湘潭大学数学系,湘潭大学数学系 湘潭 411105 ,湘潭 411105 ,湘潭 411105
  • 出版日期:2005-03-14 发布日期:2005-03-14

余越昕,文立平,李寿佛. 刚性延迟积分微分方程单支方法的B-收敛性[J]. 计算数学, 2005, 27(3): 291-302.

5-CONVERGENCE OF ONE-LEG METHODS FOR STIFF DELAY INTEGRO-DIFFERENTIAL EQUATIONS

  1. Yu Yuexin Wen Liping Li Shoufu (Department of Mathematics, Xiangtan University, Xiangtan 411105, China)
  • Online:2005-03-14 Published:2005-03-14
本文研究刚性延迟积分微分方程单支方法的B-收敛性,结果表明:A-稳定的单支方法是B-收敛的,其B-收敛阶等于其经典相容阶.最后的数值试验验证了上述理论结果.
This paper is concerned with the B-convergence of one-leg methods for stiff delay integro-differential equations(DIDEs). It is proved that an A-stable one-leg method is B-convergence of order of s, if it is consistent of order s in the classical sense. Several numerical tests are given that confirm the theoretical results.
()

[1] K. Burrage, High order algebraically stable multistep Runge-Kutta methods, SIAM J. Numer. Math., 24 (1987), 106-115.
[2] K. Burrage, W.H. Hundsdorfer, The order of B-convergence of algebraically stable Runge Kutta methods, BIT, 27 (1987), 62-71.
[3] K. Dekker, J.F.B.M. Kraaijevanger and J. Schneid, On the relation between algebraic stablility and B-convergence for Runge-Kutta methods, Numer. Math., 57(1990), 249-262.
[4] G. Dahlquist, G-stability is equivalent to A-stability, BIT, 18(1978), 384-401.
[5] W.H. Enright and M. Hu, Continuous Runge-Kutta methods for neutral Volterra integro differential equations with delay, Appl. Numer. Math., 24 (1997), 175-190.
[6] R. Prank, J. Schneid, C.W. Ueberhuber, The concept of B-convergence, SIAM J. Numer. Anal., 18(1981), 753-780.
[7] R. Frank, J. Schneid, C.W. Ueberhuber, Order results for implicit Runge-Kutta methods applied to stiff systems, SIAM J. Numer. Anal, 22(1985), 515-534.
[8] C.M. Huang, S.F. Li, H.Y. Fu and G.N. Chen, Stability and error analysis of one-leg methods for nonlinear delay differential equations, J. Comput. Appl. Math., 103(1999), 263-279.
[9] C.M. Huang, G.N. Chen, S.F. Li and H.Y. Fu, D-convergence of general linear methods for stiff delay differential equations, Comput. Math. Appl., 41(2001), 627-639.
[10] C.M. Huang, H.Y. Fu S.F. Li and G.N. Chen, D-convergence of Runge-Kutta methods for stiff delay differential equations, J. Comput. Math., 19(2001), 259-268.
[11] W.H. Hundsdorfer, On the error of general linear methods for stiff dissipative differential equations, IMA J. Numer. Anal., 14(1994), 363-379.
[12] S.F. Li, B-convergence of general linear methods, Proc. BAIL-V Int. Conf. (Shang hai,1988), 203-208, Boole Press Conf. Ser. 12, 1988.
[13] S.F. Li, B-convergence properties of multistep Runge-Kutta methods, Math. Comput., 62(1994), 565-575.
[14] S.F. Li, Stability and B-convergence properties of multistep Runge-Kutta methods, Math. Comput, 69(2000), 1481-1504.
[15] S.F. Li, B-theory of Runge-Kutta methods for stiff Volterra functional differential equations, Science in China A, 46(2003), 662-674.
[16]李寿佛,单支方法及线性多步法的稳定性准则,湘潭大学自然科学学报,9(1987),21-27. (S.F. Li, Stability criteria for one-leg methods and linear multistep methods, Natur. Sci. J. Xiangtan Univ., 9(1987), 21-27.)
[17] C.J. Zhang, S.Z. Zhou, Nonlinear stability and D-convergence of Runge-Kutta methods for delay differential equations, J. Comput. Appl. Math., 85 (1997), 225-237.
[18] G. Dahlquist, A special stability problem for linear multistep methods, BIT, 3(1963), 27-43.
No related articles found!
阅读次数
全文


摘要