]*>","")" /> 广义中立型系统的渐近稳定性及数值分析

• 论文 • 上一篇    下一篇

广义中立型系统的渐近稳定性及数值分析

丛玉豪,杨彪,匡蛟勋   

  1. 上海师范大学数学科学学院,上海师范大学数学科学学院,上海师范大学数学科学学院 上海,200234 ,上海,200234 ,上海,200234
  • 出版日期:2001-04-14 发布日期:2001-04-14

丛玉豪,杨彪,匡蛟勋. 广义中立型系统的渐近稳定性及数值分析[J]. 计算数学, 2001, 23(4): 457-468.

ASYMPTOTIC STABILITY AND NUMERICAL ANALYSIS FOR SYSTEMS OF GENERALIZED NEUTRAL DELAY DIFFERENTIAL EQUATIONS

  1. Cong Yuhao Yang Biao Kuang Jiaoxun (Department of Mathematics, Shanghai Normal University, Shanghai, 200234)
  • Online:2001-04-14 Published:2001-04-14
This paper deals with the stability analysis of implicit Runge-Kutta methods for the numerical solutions of systems of generalized neutral delay differential equations. The stability behaviour of implicit Runge-Kutta methods is analysed for the solution of the generalized system of linear neutral test equations. After an establishment of a sufficient condition for asymptotic stability of the solutions of the generalized system, we show that a implicit Runge-Kutta method is NGPG-stable if and only if it is A-stable under some Lagrange interpolation condition.
()
[1] R.K. Brayton, R.A. Willoughby, On the numerical intergration of a symmetric system of a difference-differential equations, J. Math. Anal. Appl., 18(1976), 182-189. [2] Z. Jackiewicz, One-step methods of any order for neutral functional differential equations, SIAM J. Numer. Anal., 21(1984), 486-511. [3] A. Bellen, Z. Jackiewicz and M. Zennaro, Stability analysis of one-step methods for neutral delay-differential equations, Numer. Math., 52 (1988), 605-619. [4] K. Jiaoxun, X. Jiaxiang and T. Hongjun, The asymptotic stability of one-parameter methods for neutral differential equations, BIT, 34 (1994), 400-408. [5] H. Guangda, T. Mitsui, Stability of numerical methods for systems of neutral delay differential equations, BIT, 35 (1995), 504-515. [6] T. Koto, A stability property of A-stable natural Runge-Kutta methods for systems of delay differential equations, BIT, 34 (1994), 262-267. [7] K.J. in't Hout, Stability analysis of Runge-Kutta methods for systems of delay differential equations, IMA J. Numer. Anal., 17 (1997), 17-27. [8] Q. Lin, Y. Biao and K. Jiaoxun, The NGP-stability of Runge-Kutta methods for systems of neutral delay differential equations, Numer. Math., 81(1999), 451-459. [9] A. Desoer, M. Vidyasagas, Feedback Systems: Input-Output Properties, New York, Academic Press, 1975. [10] P. Lancaster, M. Tismenetsky, The Theory of Matrices, Orland, Florida, Academic press, 1985 [11] V.K. Barwell, Special stability problem for functional differential equations, BIT, 15 (1975),130-135. [12] M.Z. Liu, M.N. Spijker, The stability of θ methods in the numerical solution, IMA Numer. An., 10(1): 31-48. [13] K.J. in't Hout, A new interpolation procedure for adapting Runge-Kutta methods for delay differential equations, BIT, 32 (1992), 634-649. [14] G. Strang, Trigonometric polynomials and difference methods of maximum accuracy, J. Math. Phys., 41(1962), 147-154. [15] A. Iserles, G. Strang, The optimal accuracy of difference schemes, Trans. Amer. math. Soc., 277 (1983), 299-303. [16] H. Guangdi, Hu Guangda, Some simple criteria for stability of neutral delay-differential system, Appl. Math. and Compu., 80 (1996), 257-271. [17] H. Guangda, Hu Guangdi, Stability of neutral delay-differential systems: boundary criteria, Appl. Math. & Compu., 87 (1997), 247-259. [18] C.J. Zhang, S. Z. Zhou, Stability analysis of LMMs for systems of neutral multidelay-differential equations, J. Computers and Mathematics with Application, 38 (1999), 113-117. [19] C. J. Zhang, S. Z. Zhou. The asymptotic stability of theoretical and numerical solutions for systems of neutral multidelay-differential equations, Science in China, 41 :11 (1998),1153-1157. [20] B.Yang, L. Qiu and T. Mitsui. GPG-stability of Runge-Kutta methods for generalized delay differential systems. J. Computers and Mathematics with Application, 37 (1999),89-97. [21] K. Jiaoxun, Numerical Analysis of Functional Differential Equations, Science Press, 1999.
No related articles found!
阅读次数
全文


摘要