]*>","")" /> 无界区域上基于自然边界归化的双调和方程的一种重叠型区域分解法

• 论文 • 上一篇    

无界区域上基于自然边界归化的双调和方程的一种重叠型区域分解法

郑权,余德浩   

  1. 中国科学院计算数学与科学工程计算研究所!科学与工程计算国家重点实验室,中国科学院计算数学与科学工程计算研究所!科学与工程计算国家重点实验室
  • 出版日期:1997-04-14 发布日期:1997-04-14

郑权,余德浩. 无界区域上基于自然边界归化的双调和方程的一种重叠型区域分解法[J]. 计算数学, 1997, 19(4): 438-448.

AN OVERLAPPING DOMAIN DECOMPOSITION METHOD BASED ON THE NATURAL BOUNDARY REDUCTION FOR BIHARMONIC BOUNDARY VALUE PROBLEMS OVER UNBOUNDED DOMAINS

  1. Zheng Quan;Yu De-hao (State Key Laborutory of Scientific and Engineering Computing,Institute of Computational Mathematics and Scientific/Engineering Computing,Chinese Academy of Sciences, Beijing)
  • Online:1997-04-14 Published:1997-04-14
In this paper, baized on the natural boudary reduction suggested by Feng and Yu, an overlapping domain decomposition method for biharmonic boundary value problems over unbounded domains is presented. By taking advantage of the map ping theory, the geometric convergence of the continuous problems is proved. The numerical examples show that the convergence rate of this Schwarz iteration is in dependent of the finite element mesh size basicly, but dependent on the frequency of the real solution and the overlapping degree of subdomains.
()

[1] Feng Kang;Yu De-hao, Canonical integral equations of elliptic boundny value problems and their numerical solutions, Proc. of Chine-France Symp. on FEM, Beijing, 1982; Science Press; Beijing, 1983, 211—252.
[2] GIowinski; R, Golub; G. H, Meurant; G. A. and Perla。,J, eds, Proceedings of First International Symposium on Domain Decomposition Methods for Partial Differential Equa- tions, SIAM, Philadelphia, PA, 1988.
[3] Han Hou-de,Wu Xiao-nan; The approximation of the exact boundny condition at an ar-tifical boundary tor linear elastic equations and its application, Proc of the Inter. Conf on Scientific Computation(HangZhou; 1991); World Sciehtific Publishing Compaany, Sin- gapore; 1992; Math. of Comput, 59:199(1992), 21-37.
[4] Scarpini,F, A decomposition methods for some biharmonic problems, J. Comp. Math.,9:4(1991);291-300.
[5] Yu De-bac; Coupling canonical boundary element methodwlth FEM to solve harmonic problem over crack domain, J. Comp. Math,1:3(1983), 195-202.
[6] Yu De-hao, Approximation of boundary conditions at indnity for hamonic equation, J.COmp. Math.; 3:3(1985), 219-227.
[7] Yu De-hao, A direct and Natural Coupling of BEM and FEM, Boundary element XIII, Computational Mechanics Publications;Southampton,1991,995—1004.
[8] 冯康,石钟慈,弹性结构的数学理论,科学出版社, 1981.
[9] 冯康,余德浩,自然边界归化与区域分解。冯康文集,国防工业出版社, 1994,367-371.
[10] 胡海昌,弹性力学的变分原理及其应用,科学出版社,1981.
[11] 蒋美群,邓庆平,一个双调和方程的 Schwarz交替法,计算数学, 16:1(1994), 93-101.
[12] 吕涛,石济民,林振宝,区域分解算法一偏微分方程数值解新技术,科学出版社, 1992.
[13] 余德浩,自然边界元方法的数学理论,科学出版社,1993.
[14] 余德浩,无界区域上基于自然边界归化的区域分解算法,计算数学,16:4(1994),448-459.
[15] 余德浩,无界区域非重叠区域分解算法的离散化及其收敛性,计算数学,18:3(1996),328-336.
[16] 郑权,无界区域上基于自然边界归化的一种重叠区域分解法及其离散化,待发表.
[17] 郑权,余德浩,基于半平面上自然边界归化的无界区域上的 Schwarz交替法及其离散化,计算数学, 19:2(1997),205-218.
[18] 郑权,余德浩,无穷扇形区域调和边值问题的重叠型区域分解法,待发表.
[19] 祝家麟,椭圆边值问题的边界元分析,科学出版社,1991.
No related articles found!
阅读次数
全文


摘要