]*>","")" /> 曲面上数据的C~1有理插值

• 论文 • 上一篇    下一篇

曲面上数据的C~1有理插值

徐国良   

  1. 中国科学院计算数学与科学工程计算研究所!科学与工程计算国家重点实验室
  • 出版日期:1997-04-14 发布日期:1997-04-14

徐国良. 曲面上数据的C~1有理插值[J]. 计算数学, 1997, 19(4): 431-437.

C~1 MODELING OF SURFACE DATA BY RATIONAL FUNCTIONS

  1. Xu Guo-liang (State Key Laboratory of Scientific and Engineering Computing,Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, Beijing)
  • Online:1997-04-14 Published:1997-04-14
We present an efficient algorithm to model a collection of scattered functional data on a given smooth surface D in three dimensional real space by a C1 piecewise trivariate rational function F over a collection of tetrahedra that contains D.
()

[1]P. Alfeld, A trivariate Clough-Tocher scheme for tetrahedral data, Computer Aided Geo-metric Design, 1(1984), 169-181.
[2]C. Bajaj and G. Xu, Modeling Scattered Surface Data on Curved Surface, in Proceedings of the2nd Pacific Graphics Conference and The 4th International Conference on Computer Aided Design,Bijing,China,1994.
[3]R.Barnhill,Surfaces in computer aided geometric design:A Survey with New Results,Computer Aided Geometric Design,2(1985),1-17.
[4]R.E Barnhill,and T.AFoley,Methods for constructing surfaces on surfaces,in G.Farin,editor,Feometric Modeling:Methods and their Applications,1-25,Springer,Berlin,1991.
[5]R.E.Barnhill and H.Pottmann,Fat surfaces:a trivariate approach to triangle-based interpolation on surfaces,Computer Aided Feometric Design,9:365-378,1992.
[6]R.E.Barnhill,H.S.Ou,Surfaces defined on surface,Computer Aided Geometric Design,7(1990),323-336.
[7]R.E.Barnhill,B.R.Piper,and K.L.Rescorla,Interpolation to arbitrary data on a surface,in G.Farin,editor,Geometric Modeling ,281-289,SIAM,Philadelphia,1987.
[8]L.P.Chew,Fuaranteed-Quality Mesh Generation for Curved Surface,in 9th Annual Computational Geometry,274-280,CA,USA,May 1993.
[9]G.Farin,Curves and Surfaces for Computer Aided Geometric Design:A Practical Guide, Second Edition,Academic Press Inc.,1990.
[10]T.A.Foley,D.A.Lane,G.M.Nielson,R.Franke,and H.Hagen,Interpolation of scattered data on closed surfaces,Computer Aided Geometric Design,7(1990),303-312.
[11]R.Franke,Recent advances in the approximation of surfaces from scattered data,in C.K.Chui,L.L.Schumarker,and F.I.Utreras,editors,Multivariate Approximation,275- 335,Academic Press,New York,1987.
[12]Choi B.K,Shin H.Y,Yoon Y.I.and Ramaraj R,Triangulation of scattered data in 3D space,Computed-Aided Design,20(1988),239-248.
[13]G.Nielson,T.Foley,B.Hamann,and D.Lane, Visualizing and Modeling Scattered Multivariate Data,IEEE Computer Graphics And Applications,11(1991),47-55.
[14]G.M.Nielson,Scattered Data Modeling,IEEE Computer Graphics And Applications,13(1993),60-70.
[15]K.Opitz and H.Pottmann,Computing Shortest Paths on Polyhedra:Applications in Geometric Modeling and Scientfic Visralization,Internatioal Journal of Computational Geometry and Applications,1995.
[16]H.Pottmann,Interpolation on surfaces using minimum norm networks,Computer Aided Geometric Design,9(1992),51-67.
[17]K.L.Rescorla,C1triate polynomial interpolation,Computer Aided Geometric Design,4(1987),237-244.
[18]A.J.Worsey and G.Farin,An n-Dimensional Clough-Tocher Interpolant,Constructive Approximation,3(1987),99-110.
No related articles found!
阅读次数
全文


摘要