]*>","")" /> 多滞量积分方程基于高阶插值的分步配置方法

• 论文 • 上一篇    下一篇

多滞量积分方程基于高阶插值的分步配置方法

胡齐芽   

  1. 中国科学院数学研究所
  • 出版日期:1997-04-14 发布日期:1997-04-14

胡齐芽. 多滞量积分方程基于高阶插值的分步配置方法[J]. 计算数学, 1997, 19(4): 353-358.

THE STEPWISE COLLOCATION METHODS BASED ON THE HIGHER ORDER INTERPOLATION FOR VOLTERRA INTEGRAL EQUATIONS WITH MULTIPLE DELAYS

  1. Hu Qi-ya (Institute of Mathematics, Chinese Academy of Sciences)
  • Online:1997-04-14 Published:1997-04-14
In this paper we discuss the stepwise collocation method for nonlinear volterra integral equation with multiple delays. It will be shown that, when the higher order interpolation operation is added to the numerical solutions generated by the continuous piecewise polynomial spline collocation with quasi-uniform meshes, the new approximate solutions will, under the appropriate assumptions, possess the optimal global superconvergence rates.
()

[1]J.M. Bownds,J.M. Cushing, R. Schutte, Existence, uniqueness and extendibility of so-lutions of volterra integral systems with multiple,varuabke lags,Funkicial.Ekuac,19(1976), 101-111.
[2]K.L. Cooke, An epidemic equation with immigration, Math. Biosci, 29(1976), 135-158.
[3]H. Brunner, Iterated collocation methods for Volterra integral equations with delny argu-ments; ,Math. Comp, 62(1994), 581-599.
[4]C.T.H. Baker and M.S. Derakhshan, Convergence and stability of quadrature methods applied to Volterra equations with delay, IMA J. Numer. Anal, 13(1993), 67-91.
[5]S.Joe,Collocation methods using piecewise polynomials for second kind integral equations,J.Comp.Appl.Math,13(1985),391-400.
[6]J.G. Blom, H. Brunner, The numerical solution of nonlinear Volterra integral equations of th。second kind by collacation and iterated collocation methods, SIAM J. Sci.Stat.Comput, 8(1987), 806-824.
[7]林群,杨一都,有限元方法的插值和校正,数学的实践与认识,2(1991),63-68.
No related articles found!
阅读次数
全文


摘要