]*>","")" /> 关于PDAOR算法的广义STEIN—ROSENBERG型定理

• 论文 • 上一篇    

关于PDAOR算法的广义STEIN—ROSENBERG型定理

白中治   

  1. 中国科学院计算数学与科学工程计算研究所
  • 出版日期:1997-03-14 发布日期:1997-03-14

白中治. 关于PDAOR算法的广义STEIN—ROSENBERG型定理[J]. 计算数学, 1997, 19(3): 329-335.

THE GENERALIZED STEIN-ROSENBERG TYPE THEOREM FOR THE PDAOR-METHOD

  1. Bai Zhong-zhi(State Key Laboratory of Scientific/Engineering Computing, Institute of Computational Mathematics and Scientific/Engineering Computing,Chinese Academy of Sciences, Beijing)
  • Online:1997-03-14 Published:1997-03-14
The generalized Stein-Rosenberg type theorem is established for the parallel decomposition-type accelerated overrelaxation method (PDAOR-method) for solving the large scale block systems of linear equations. This thereby affords reliable criterions for judging the convergence and divergence, as well as the convergence rate and divergence rate, of this PDAOR-method.
()

[1] Bai Zhong-zhi, Su Yangfeng, On the convergence of a class of parallel decompositiontyperelaxation methods, Appl. Math. Comp., 81: 1 (1997), 1-21.
[2] Bai Zhong-zhi, A class of parallel decompositiontype relaxation methods for large sparsesystems of linear equations, Linear Algebra Appl-, accepted for publication, 1997.
[3] Bai Zhongzhi, Some properties of the block matrices in the parallel decompositiontyperelaxation methods, submitted for publication, 1997.
[4] Bai Zhong-zhi, Parallel matrix multisplitting block relaxation iteration methods, Math.Numer. Sinica, 17(1995), 238-252. (in Chinese)
[5] Bai Zhongzhi, On the convergence of the generalized matrix multisplitting relaxed methods, Commun. Numer. Meth. Engrp., 11 (l995), 363-371.
[6] Bai Zhong-zhi, Comparisons of the convergence and divergence rates of the parallel matrixmultisplitting iteration methods, Chinese J Engng. Math., 11(1994), 99-l02- (in Chinese)
[7] A. Hadjidimos, Accelerated overrelaJxation method, Math. Comp., 32 (1978), 149-157.
[8] R.S. Vaga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N- J., 1962.
[9]李庆扬,易大义,王能超,现代数值分析,高等教育出版社,北京, 1995.
[10]李庆扬,莫孜中,祁力群,非线性方程组的数值解法,科学出版社。北京,1987.
[11]魏紫銮,线性规划的分解原则及其实现,数值计算与计算机应用,16:2(1995),81-89.
No related articles found!
阅读次数
全文


摘要