]*>","")" /> 基于半平面上自然边界归化的无界区域上的Schwarz交替法及其离散化

• 论文 •    下一篇

基于半平面上自然边界归化的无界区域上的Schwarz交替法及其离散化

郑权,余德浩   

  1. 中国科学院计算数学与科学工程计算研究所!科学与工程计算国家重点实验室,中国科学院计算数学与科学工程计算研究所!科学与工程计算国家重点实验室
  • 出版日期:1997-03-14 发布日期:1997-03-14

郑权,余德浩. 基于半平面上自然边界归化的无界区域上的Schwarz交替法及其离散化[J]. 计算数学, 1997, 19(3): 205-218.

A SCHWXRZ ALTERNATING METHOD FOR UNBOUNDED DOMAINS AND ITS DISCRETIZATION BASED ON NATURAL BOUNDARY REDUCTION OVER HALF-PLANE

  1. Zheng Quan ;Yu De-hao(State Key Laboratory of Scientific and Engineering Computing, Institute of ComputationalMathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, Beijing)
  • Online:1997-03-14 Published:1997-03-14
In this paper,we discuss a Schwarz alternating method for a kind of unboundeddomains, which can be decomposed into a bounded domain and a half-planar domain. Finite Element Method and Natural Boudary Reduction are used alternatively. The uniform geometric convergence of both continuous and discrete problems is proved. The theoretical results as well as the numerical examples show thatthe convergence rate of this discrete Schwarz iteration is independent of the finiteelement mesh size, but dependent on the overlapping degree of subdomains.
()

[1] P.G. Ciarlet; P.-A. Raviart, Maximum principle and uniform convergence for the finite element method; Comput Methods Appl. Mech. Engrg,2(1973),17-31.
[2] Feng Kang, Yu De-hao, Canonical integral equations of elliptic boundary value problems and their numerical solutions Proc of China-France Symp.on FEM;Beijing,1982; Science Pless,Beijing,1983,211-252.
[3] R. Glowinski, G.H. Golub; G.A. Meurant, and J. Periaux, eds.Proceedings of First Inter-national Symposium on Domain Decomposition Methods for Partial Differential Equations; SIAM; Philadelphia; PA; 1988.
[4] Wang Lie-heng, On the max-min principle for the linear finite element equation for the Dirichlet problem of Laplace equation, Proc. of China-France Symp. on FEM, Bei jing,1982;Science Press,Beijing,1983,1019—1026.
[5] Yu De-hao; A direct and natural coupling of BEM and FEM, Boundary Element XIII, Computational Mechanics Publications, Southampton, 1991; 995-1004.
[6] 冯康,余德浩,自然边界归化与区域分解,冯康文集,国防工业出版社,1994;367-371.
[7] 蒋美群,邓庆平,一个双调和方程的 Schwarz交替法,计算数学, 16:l(1994); 93-101.
[8] 吕涛,石济民,林振宝,区域分解算法-偏微分方程数值解新技术,科学出版社, 1992.
[9] 数学手册,高等教育出版社, 1979.
[10]余德浩,自然边界元方法的数学理论,科学出版社, 1993.
[11]余德浩,无界区域上基于自然边界归化的区域分解算法,计算数学,16:4(1994),448-459.
[12]余德浩,无界区域非重叠区域分解算法的离散化及其收敛性,计算数学,18:3(1996),328一336.
[13]郑权,无界区域上基于自然边界归化的一种重叠区域分解算法及其离散化.待发表
[14]祝家麟,椭圆边值问题的边界元分析,科学出版社,1991.
No related articles found!
阅读次数
全文


摘要