]*>","")" />
• 论文 • 下一篇
郑权,余德浩
郑权,余德浩. 基于半平面上自然边界归化的无界区域上的Schwarz交替法及其离散化[J]. 计算数学, 1997, 19(3): 205-218.
分享此文:
[1] P.G. Ciarlet; P.-A. Raviart, Maximum principle and uniform convergence for the finite element method; Comput Methods Appl. Mech. Engrg,2(1973),17-31. [2] Feng Kang, Yu De-hao, Canonical integral equations of elliptic boundary value problems and their numerical solutions Proc of China-France Symp.on FEM;Beijing,1982; Science Pless,Beijing,1983,211-252. [3] R. Glowinski, G.H. Golub; G.A. Meurant, and J. Periaux, eds.Proceedings of First Inter-national Symposium on Domain Decomposition Methods for Partial Differential Equations; SIAM; Philadelphia; PA; 1988. [4] Wang Lie-heng, On the max-min principle for the linear finite element equation for the Dirichlet problem of Laplace equation, Proc. of China-France Symp. on FEM, Bei jing,1982;Science Press,Beijing,1983,1019—1026. [5] Yu De-hao; A direct and natural coupling of BEM and FEM, Boundary Element XIII, Computational Mechanics Publications, Southampton, 1991; 995-1004. [6] 冯康,余德浩,自然边界归化与区域分解,冯康文集,国防工业出版社,1994;367-371. [7] 蒋美群,邓庆平,一个双调和方程的 Schwarz交替法,计算数学, 16:l(1994); 93-101. [8] 吕涛,石济民,林振宝,区域分解算法-偏微分方程数值解新技术,科学出版社, 1992. [9] 数学手册,高等教育出版社, 1979. [10]余德浩,自然边界元方法的数学理论,科学出版社, 1993. [11]余德浩,无界区域上基于自然边界归化的区域分解算法,计算数学,16:4(1994),448-459. [12]余德浩,无界区域非重叠区域分解算法的离散化及其收敛性,计算数学,18:3(1996),328一336. [13]郑权,无界区域上基于自然边界归化的一种重叠区域分解算法及其离散化.待发表 [14]祝家麟,椭圆边值问题的边界元分析,科学出版社,1991. |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||