• 论文 •

### 定常Stokes问题的罚函数有限元方法

1. 大连工学院应用数学所
• 出版日期:1987-03-14 发布日期:1987-03-14

### ON THE PENALTY FINITE ELEMENT METHODS FOR THE STATIONARY STOKESIAN PROBLEM

1. Wang Ming Delian Institute of Technology
• Online:1987-03-14 Published:1987-03-14
§1.引言 本文讨论定常Stokes问题的几种罚函数有限元方法.设Ω是R~n中的有界区域,且具有Lipschita连续的边界?Ω.令非f∈(L~2(Ω))~n,则定常Stokes方程的齐次Dirichlet边值问题可描述如下:求(u,p)∈(H_0~1(Ω))~n×L~2(Ω),满足
This paper is devoted to the penalty finite element methods for the stationary stokesian pro-blem. It is shown that under certain conditions the RIP method can be derived from the quasi-conforming element techniques and that the later are more natural and rational and simpler aswell. The error estimates of these techniques are also discussed. In the end, an example isgiven.
()
 [1] 应隆安,粘性不可压缩流体运动的有限元法,数学进展,12:2(1983) ,124-132． [2] J. T. Oden, RIP-methods for Stokesian flows, Finite Elements in Fluids, Vol. 4, John Wiley & Sons. [3] Tang Li-min, Liu Ying-xi, Quasi-conforming element techniques for penalty finite element methods, Finite Elements in Analysis and Design. 1(1985) . 25--33． [4] 张鸿庆,王鸣,多套函数有限元逼近与拟协调板元,应用数学和力学,6:1(1985) ,41-52． [5] 张鸿庆,王鸣,拟协调元空间的紧致性和拟协调元法的收敛性,应用数学和力学,7:5(1986) . [6] Wang Ming, Zhang Hong-qing, On the convergence of quasi-conforming elements for linear elasticity problem, JCM, 4: 2(1986) ,131--145． [7] V. Girault, P. A. Raviart, Finite Element Approximation of the Navier-Stokes Equations. Lecture Notes in Math., 749, Springer-Verlag. 1979．
 No related articles found!