• 论文 • 上一篇    下一篇

泛函微分方程的循环多步法

苏德富,易连兴,潘劲松   

  1. 广西大学 ,广西大学 ,广西大学
  • 出版日期:1987-03-14 发布日期:1987-03-14

苏德富,易连兴,潘劲松. 泛函微分方程的循环多步法[J]. 计算数学, 1987, 9(3): 303-308.

CYCLIC MULTISTEP METHODS FOR SOLVING FUNCTIONAL DIFFERENTIAL EQUATIONS

  1. Su De-fu;Yi Lian-xing;Pan Jin-song Guangxi University
  • Online:1987-03-14 Published:1987-03-14
其中泛函F:1×C~1(I)×C~0(I)→R,I表示区间[0,T],满足下列条件: A_1.对于给定的x∈C~1(I),映射t→F(t,x(·),x′(·))在I上连续. A_2.算子F满足Lipschitz条件:
Consider neutral functional Differential equationsy'(t)=F(t,y(·), y'(·)), t∈[0,T],y(0)=t_0.We are concerned with deriving sufficient conditions for cyclic multistep methods to beconvergent. Mumerical examples are presented.
()

[1] 苏德富,中立型泛函微分方程的多步法,计算数学,6:3(1984) ,226-231.
[2] Donalson, Hanson, Cyclic Composite multistep prodictor-crrector methods, SIAM J. Numer. Anal. 8(1971) . 137--457.
[3] Mckee, Cyclic multistep methods for solving volterra integro-differential equations, SIAM J. Numer. Anal. 16(1979) , 106--114.
[4] Allen, Mckee, Fixed Step discretisation methods for delay differential equations, Comp & math. with Appls., 17(1981) , 413--423.
[5] 苏德富,泛函微分方程的数值解(一),(二),广西大学学报,1983年第2期,1984年第1期.
[6] Castleton, L. J. Grimm, A first order methods for the differential equation of neutral type, Math. Comp., 27(1973) , 571--577.
[7] Jackiewicz, The numerical solution of volterra functional differential equations of neutral type, SIAM J. Numer. Anal. 18(1981) , 615--626.
No related articles found!
阅读次数
全文


摘要