• 论文 • 上一篇    下一篇

Metropolis抽样方法的推广

张孝泽   

  1. 中国科学院原子能研究所
  • 出版日期:1984-03-14 发布日期:1984-03-14

张孝泽. Metropolis抽样方法的推广[J]. 计算数学, 1984, 6(3): 306-316.

GENERALIZATION OF METROPOLIS SAMPLING METHOD

  1. Zhang Xiao-ze Institute of Atomic Energy, Academia Sinica
  • Online:1984-03-14 Published:1984-03-14
本文从Metropolis抽样方法的一般形式出发,推广了热浴(Heat Bath)法,给出了相应的马尔科夫链的转移概率矩阵,证明了这种抽样方法的收敛性;并指出:热浴法只是本方法的一种特殊情况。初步计算表明,本法的收敛速度快于其它方法。推广到连续分布的情况也做了讨论。
With the general form of Metropolis sampling method, the heat bath method isgeneralized and its transition probability matrix of the Markov chain is given. Theconvergence of this method is proved. It is pointed out that heat bath method is onlya special case of this method. Preliminary calculations show that the convergence rateis better than that of other methods. The generalization is also discussed for the con-tinuous case.
()

[1] N. Metropolis et al., J. Chem. Phys., 21, (1953) , 1087.
[2] J. M. Hammersley, D. C. Handscomb, Monte Carlo Methods, Methuen and Co., London, 1964. 113-121.
[3] K. Binder (ed), Monte Carlo Methods in Statistical Physics, Springer-Verlag, 1979.
[4] J. D. Valleau et al., A Guide to Monte Carlo for Statistical Mechanics, Ⅰ and Ⅱ, in Modern Theoretical Chemistry, Vol Ⅴ, ed. by B. Berne, Plenum, Press, New York, 1977.
[5] M.费史,概率论及数理统计,上海科学技术出版社,1962.
[6] A.A.Barker,Austral.J.Phys,18,119,1965.
[7] 朱允伦,Z_4规范场-Z_2Higgs场耦合系统相结构的蒙特卡罗研究,全国统计物理与凝聚态理论学术会议论文摘要,中国科学院数学物理学部,1981,12月,武汉.
[8] M. Creutz, L Jacobs, C. Rebbi, Phys. Rev., D20, (1979) , 1915. G. Bhanot, M. Creutz, Phys. Rev., D21, (1980) , 2892.
[9] 张孝泽,萨本豪,蒙特卡罗方法在统计物理中的应用概况,(待发表).
[10] M. L. Millan, Phys. Rev., A 138, (1965) , 442.
[11] 南京大学数学系计算数学专业编,线性代数,科学出版社,1978。
No related articles found!
阅读次数
全文


摘要