Previous Articles Next Articles
Yuhuan Yuan, Huazhong Tang
[1] M. Anderson, E.W. Hirschmann, S.L. Liebling, and D. Neilsen, Relativistic MHD with adaptive mesh refinement, Class. Quantum Grav., 23(2006), 6503-6524. [2] D.S. Balsara, Riemann solver for relativistic hydrodynamics, J. Comput. Phys., 114(1994), 284-297. [3] M. Ben-Artzi and J. Q. Li, Hyperbolic conservation laws:Riemann invariants and the generalized Riemann problem, Numer. Math., 106(2007), 369-425. [4] Y.P. Chen, Y.Y. Kuang, and H.Z. Tang, Second-order accurate genuine BGK schemes for the ultra-relativistic flow simulations, J. Comput. Phys., 349(2017), 300-327. [5] L. Del Zanna and N. Bucciantini, An efficient shock-capturing central-type scheme for multidimensional relativistic flows I:Hydrodynamics, Astron. Astrophys., 390(2002), 1177-1186. [6] L. Del Zanna, N. Bucciantini, and P. Londrillo, An efficient shock-capturing central-type scheme for multidimensional relativistic flows I. Hydrodynamics, Astron. Astrophys., 390(2002), 11771186. [7] R. Donat, J.A. Font, J.M. Ibáñez, and A. Marquina, A flux-split algorithm applied to relativistic flows, J. Comput. Phys., 146(1998), 58-81. [8] EE Han, J.Q. Li, and H.Z. Tang, An adaptive GRP scheme for compressible fluid flows, J. Comput. Phys., 229(2010), 1448-1466. [9] EE Han, J.Q. Li, and H.Z. Tang, Accuracy of the adaptive GRP scheme and the simulation of 2-D Riemann problems for compressible Euler equations, Commun. Comput. Phys., 10(2011), 577-606. [10] P. He and H.Z. Tang, An adaptive moving mesh method for two-dimensional relativistic hydrodynamics, Commun. Comput. Phys., 11(2012), 114-146. [11] P. He and H.Z. Tang, An adaptive moving mesh method for two-dimensional relativistic magnetohydrodynamics, Computers & Fluids, 60(2012), 1-20. [12] V. Honkkila and P. Janhunen, HLLC solver for ideal relativistic MHD, J. Comput. Phys., 223(2007), 643-656. [13] B. van der Holst, R. Keppens, and Z. Meliani, A multidimensional grid-adaptive relativistic magnetofluid code, Comput. Phys. Comm., 179(2008), 617-627. [14] G.S. Jiang and C.-W. Shu, Efficient implementation of Weighted ENO schemes, J. Comput. Phys., 126(1996), 202-228. [15] A.V. Koldoba, O.A. Kuznetsov, and G.V. Ustyugova, An approximate Riemann solver for relativistic magnetohydrodynamics, Mon. Not. R. Astron. Soc., 333(2002), 932-942. [16] S.S. Komissarov, A Godunov-type scheme for relativistic magnetohydrodynamics, Mon. Not. R. Astron. Soc., 303(1999), 343-366. [17] B.J. Lee, E.F. Toro, C.E. Castro, and N. Nikiforakis, Adaptive Osher-type scheme for the Euler equations with highly nonlinear equations of state, J. Comput. Phys., 246(2013), 165-183. [18] J.Q. Li and Z.F. Du, A two-stage fourth order time-accurate discretization for Lax-Wendroff type flow solvers I. Hyperbolic conservation laws, SIAM J. Sci. Comput., 38(2016), A3046-A3069. [19] M.M. May and R.H.White, Hydrodynamic calculations of general-relativistic collapse, Phys. Rev., 141(1966), 1232-1241. [20] M.M. May and R.H. White, Stellar dynamics and gravitational collapse, in Methods in Computational Physics, Vol. 7, Astrophysics (B. Alder, S. Fernbach, and M. Rotenberg edited), Academic Press, 1967, 219-258. [21] A. Mignone and G. Bodo, An HLLC Riemann solver for relativistic flows I. Hydrodynamics, Mon. Not. R. Astron. Soc., 364(2005), 126-136. [22] L. Pan, K. Xu, Q.B. Li, and J.Q. Li, An efficient and accurate two-stage fourth-order gas-kinetic scheme for the Euler and Navier-Stokes equations, J. Comput. Phys., 326(2016), 197-221. [23] S. Qamar and G. Warnecke, A high-order kinetic flux-splitting method for the relativistic magnetohydrodynamics, J. Comput. Phys., 205(2005), 182-204. [24] T. Qin, C.-W. Shu and Y. Yang, Bound-preserving discontinuous Galerkin methods for relativistic hydrodynamics, J. Comput. Phys., 315(2016), 323-347. [25] E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, 3rd edition, Springer, Berlin, 2009. [26] J.R. Wilson, Numerical study of fluid flow in a Kerr space, Astrophys. J., 173(1972), 431-438. [27] J.R. Wilson, A numerical method for relativistic hydrodynamics, in Sources of Gravitational Radiation, L.L. Smarr edited, Cambridge University Press, 1979, 423-446. [28] K. Wu, Design of provably physical-constraint-preserving methods for general relativistic hydrodynamics, Phys. Rev. D, 95(2017), 103001. [29] K.L. Wu and H.Z. Tang, Finite volume local evolution Galerkin method for two-dimensional relativistic hydrodynamics, J. Comput. Phys., 256(2014), 277-307. [30] K.L. Wu and H.Z. Tang, A direct Eulerian GRP scheme for spherically symmetric general relativistic hydrodynamics, SIAM J. Sci. Comput., 38(2016), B458-B489. [31] K.L. Wu and H.Z. Tang, High-order accurate physical-constraints-preserving finite difference WENO schemes for special relativistic hydrodynamics, J. Comput. Phys., 298(2015), 539-564. [32] K.L. Wu and H.Z. Tang, Admissible states and physical constraints preserving numerical schemes for special relativistic magnetohydrodynamics, Math. Models and Meth. in Appl. Sci., 27(2017), 1871-1928. [33] K.L. Wu and H.Z. Tang, Physical-constraints-preserving central discontinuous Galerkin methods for special relativistic hydrodynamics with a general equation of state, Astrophys. J. Suppl. series, 228(2017), 3. [34] K.L. Wu and H.Z. Tang, On physical-constraints-preserving schemes for special relativistic magnetohydrodynamics with a general equation of state, Z. Angew. Math. Phys., 69(2018), 84. [35] K.L. Wu, Z.C. Yang, and H.Z. Tang, A third-order accurate direct Eulerian GRP scheme for one-dimensional relativistic hydrodynamics, East Asian J. Appl. Math., 4(2014), 95-131. [36] K.L. Wu, Z.C. Yang, and H.Z. Tang, A third-order accurate direct Eulerian GRP scheme for the Euler equations in gas dynamics, J. Comput. Phys., 264(2014), 177-208. [37] Z.C. Yang, P. He, and H.Z. Tang, A direct Eulerian GRP scheme for relativistic hydrodynamics:One-dimensional case, J. Comput. Phys., 230(2011), 7964-7987. [38] Z.C. Yang and H.Z. Tang, A direct Eulerian GRP scheme for relativistic hydrodynamics:Twodimensional case, J. Comput. Phys., 231(2012), 2116-2139. [39] J. Zhao and H.Z. Tang, Runge-Kutta discontinuous Galerkin methods for the special relativistic magnetohydrodynamics, J. Comput. Phys., 343(2017), 33-72. [40] J. Zhao and H.Z. Tang, Runge-Kutta central discontinuous Galerkin methods for the special relativistic hydrodynamics, Commun. Comput. Phys., 22(2017), 643-682. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||