• Original Articles • Previous Articles Next Articles
Hongtao Fan, Bing Zheng
Hongtao Fan, Bing Zheng. THE GENERALIZED LOCAL HERMITIAN AND SKEW-HERMITIAN SPLITTING ITERATION METHODS FOR THE NON-HERMITIAN GENERALIZED SADDLE POINT PROBLEMS[J]. Journal of Computational Mathematics, 2014, 32(3): 312-331.
[1] Z.-Z. Bai and G.H. Golub, Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems, IMA J. Numer. Anal., 27 (2007), 1–23.[2] Z.-Z. Bai, G.H. Golub and M.K. Ng, Hermitian and skew-Hermitian splitting methods for non- Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl., 24 (2003), 603–626.[3] Z.-Z. Bai and Z.-Q. Wang, On parameterized inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl., 428 (2008), 2900–2932.[4] Z.-Z. Bai, G.H. Golub and C.-K. Li, Optimal parameter in Hermitian and skew-Hermitian splitting method for certain two-by-two block matrices, SIAM J. Sci. Comput., 28 (2006), 583–603.[5] Z.-Z. Bai, G.H. Golub and J.-Y. Pan, Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems, Numer. Math., 98 (2004), 1–32.[6] Z.-Z. Bai, B.N. Parlett and Z.-Q. Wang, On generalized successive overrelaxation methods for augmented linear systems, Numer. Math., 102 (2005), 1–38.[7] L. Bergamaschi, J. Gondzio and G. Zilli, Preconditioning indefinite systems in interior point methods for optimization, Comput. Optim. Appl., 28 (2004), 149–171.[8] M. Benzi and G.H. Golub, A precoditioner for generalized saddle point problems, SIAM J. Matrix Anal. Appl., 26 (2004), 20–41.[9] M. Benzi, G.H. Golub and J. Liesen, Numerical solution of saddle point problems, Acta Numer., 14 (2005), 1–137.[10] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York and London, 1991.[11] X.-J. Chen, On preconditioned Uzawa methods and SOR methods for saddle-point problems, J. Comput. Appl. Math., 100 (1998), 207–224.[12] F. Chen and Y.-L. Jiang, A generalization of the inexact parameterized Uzawa methods for saddle point problems, Appl. Math. Comput., 206 (2008), 765–771.[13] M.-R. Cui, Analysis of iterative algorithms of Uzawa type for saddle point problems, Appl. Numer. Math., 50 (2004), 133–146.[14] J.H. Bramble and J.E. Pasciak, A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems, Math. Comput., 50 (1988), 1–17.[15] Z.-H. Cao, Fast Uzawa algorithms for solving non-symmetric stabilized saddle point problems, Numer. Linear Algebra Appl., 11 (2004), 1–24.[16] B. Zheng, Z.-Z. Bai and X. Yang, On semi-convergence of parameterized Uzawa methods for singular saddle point problems, Linear Algebra Appl., 431 (2009), 808–817.[17] H.C. Elman, D.J. Silvester and A.J.Wathen, Finite Elements and Fast Iterative Solvers, Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford, 2005.[18] T. Rusten and R. Winther, A preconditioned iterative method for saddle point problems, SIAM J. Matrix Anal. Appl., 13 (1992), 887–904.[19] J.H. Bramble, J.E. Pasciak and A.T. Vassilev, Uzawa type algorithms for nonsymmetric saddle point problems, Math. Comput., 69 (1999), 667–689.[20] G.H. Golub, X. Wu and J.-Y. Yuan, SOR-like methods for augmented systems, BIT Numer. Math., 41 (2001), 71–85.[21] M.-Q. Jiang and Y. Cao, On local Hermitian and skew-Hermitian splitting iteration methods for generalized saddle point problems, J. Comput. Appl. Math., 231 (2009), 973–982.[22] X.-F. Ling and X.-Z. Hu, On the iterative algorithm for large sparse saddle point problems, Appl. Math. Comput., 178 (2006), 372–379.[23] Y.-Q. Lin and Y.-M. Wei, Corrected Uzawa methods for solving large nonsymmetric saddle point problems, Appl. Math. Comput., 183 (2006), 1108–1120.[24] Z.-Z. Bai, Optimal parameters in the HSS-like methods for saddle point problems, Numer. Linear Agebra Appl., 16 (2009), 447–479.[25] Z.-H. Huang and T.-Z. Huang, Sepectral properties of the preconditioned AHSS iteration method for generalized saddle point problems, Comput. Appl. Math., 29 (2010), 269–295.[26] Z.-Z. Bai and G.-Q. Li, Restrictively preconditioned conjugate grdient methods for systems of linear equations, IMA J. Numer. Anal., 23 (2003), 561–580.[27] Z.-Z. Bai, G.H. Golub and C.-K. Li, Convergence properties of preconditioned Hermitian and skew- Hermitian splitting methods for non-Hermitian positive semidefinite matrices, Math. Comput., 76 (2007), 287–298.[28] J.-F. Yin and Z.-Z. Bai, The restrictively preconditioned conjugate gradient methods on normal residual for block two-by-two linear systems, J. Comput. Math., 26 (2008), 240–249.[29] D.M. Yong, Iterative Solution for Large Linear Sysytems, Academic Press, New York, 1971.[30] J.-L. Li, D. Luo and Z.-J. Zhang, A generalization of local symmetric and skew-symmetric iteration methods for generalized saddle point problems, J. Appl. Math. Inform., 29 (2011), 1167–1178.[31] Y.-Y. Zhou and G.-F. Zhang, A generalization of parameterized inexact Uzawa method for generalized saddle point problems, Appl. Math. Comput., 215 (2009), 599–607.[32] M.-Z. Zhu, A generalization of the local Hermitian and skew-Hermitian splitting iteration methods for the non-Hermitian saddle point problem, Appl. Math. Comput., 218 (2012), 8816–8824. |
[1] | Xiaoyu Wang, Ya-xiang Yuan. STOCHASTIC TRUST-REGION METHODS WITH TRUST-REGION RADIUS DEPENDING ON PROBABILISTIC MODELS [J]. Journal of Computational Mathematics, 2022, 40(2): 294-334. |
[2] | Mohammed Harunor Rashid. METRICALLY REGULAR MAPPING AND ITS UTILIZATION TO CONVERGENCE ANALYSIS OF A RESTRICTED INEXACT NEWTON-TYPE METHOD [J]. Journal of Computational Mathematics, 2022, 40(1): 44-69. |
[3] | Yang Chen, Chunlin Wu. DATA-DRIVEN TIGHT FRAME CONSTRUCTION FOR IMPULSIVE NOISE REMOVAL [J]. Journal of Computational Mathematics, 2022, 40(1): 89-107. |
[4] | Qianqian Chu, Guanghui Jin, Jihong Shen, Yuanfeng Jin. NUMERICAL ANALYSIS OF CRANK-NICOLSON SCHEME FOR THE ALLEN-CAHN EQUATION [J]. Journal of Computational Mathematics, 2021, 39(5): 655-665. |
[5] | Lu Zhang, Qifeng Zhang, Hai-wei Sun. A FAST COMPACT DIFFERENCE METHOD FOR TWO-DIMENSIONAL NONLINEAR SPACE-FRACTIONAL COMPLEX GINZBURG-LANDAU EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(5): 708-732. |
[6] | Xia Cui, Guangwei Yuan, Fei Zhao. ANALYSIS ON A NUMERICAL SCHEME WITH SECOND-ORDER TIME ACCURACY FOR NONLINEAR DIFFUSION EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(5): 777-800. |
[7] | Yong Liu, Chi-Wang Shu, Mengping Zhang. SUB-OPTIMAL CONVERGENCE OF DISCONTINUOUS GALERKIN METHODS WITH CENTRAL FLUXES FOR LINEAR HYPERBOLIC EQUATIONS WITH EVEN DEGREE POLYNOMIAL APPROXIMATIONS [J]. Journal of Computational Mathematics, 2021, 39(4): 518-537. |
[8] | Xiaobing Feng, Yukun Li, Yi Zhang. STRONG CONVERGENCE OF A FULLY DISCRETE FINITE ELEMENT METHOD FOR A CLASS OF SEMILINEAR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS WITH MULTIPLICATIVE NOISE [J]. Journal of Computational Mathematics, 2021, 39(4): 574-598. |
[9] | Bin Huang, Aiguo Xiao, Gengen Zhang. IMPLICIT-EXPLICIT RUNGE-KUTTA-ROSENBROCK METHODS WITH ERROR ANALYSIS FOR NONLINEAR STIFF DIFFERENTIAL EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(4): 599-620. |
[10] | Yaozong Tang, Qingzhi Yang, Gang Luo. CONVERGENCE ANALYSIS ON SS-HOPM FOR BEC-LIKE NONLINEAR EIGENVALUE PROBLEMS [J]. Journal of Computational Mathematics, 2021, 39(4): 621-632. |
[11] | Yuting Chen, Mingyuan Cao, Yueting Yang, Qingdao Huang. AN ADAPTIVE TRUST-REGION METHOD FOR GENERALIZED EIGENVALUES OF SYMMETRIC TENSORS [J]. Journal of Computational Mathematics, 2021, 39(3): 358-374. |
[12] | Keke Zhang, Hongwei Liu, Zexian Liu. A NEW ADAPTIVE SUBSPACE MINIMIZATION THREE-TERM CONJUGATE GRADIENT ALGORITHM FOR UNCONSTRAINED OPTIMIZATION [J]. Journal of Computational Mathematics, 2021, 39(2): 159-177. |
[13] | Huaijun Yang, Dongyang Shi, Qian Liu. SUPERCONVERGENCE ANALYSIS OF LOW ORDER NONCONFORMING MIXED FINITE ELEMENT METHODS FOR TIME-DEPENDENT NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(1): 63-80. |
[14] | Yongtao Zhou, Chengjian Zhang, Huiru Wang. BOUNDARY VALUE METHODS FOR CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(1): 108-129. |
[15] | Xiaocui Li, Xu You. MIXED FINITE ELEMENT METHODS FOR FRACTIONAL NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(1): 130-146. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||