Previous Articles     Next Articles

A θ-L APPROACH FOR SOLVING SOLID-STATE DEWETTING PROBLEMS

Weijie Huang1, Wei Jiang2,3, Yan Wang4   

  1. 1. Beijing Computational Science Research Center, Beijing 100193, China;
    2. School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China;
    3. Hubei Key Laboratory of Computational Science, Wuhan University, Wuhan 430072, China;
    4. School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China
  • Received:2020-02-19 Revised:2020-09-01 Online:2022-03-15 Published:2022-03-29
  • Contact: Yan Wang,Email: wang.yan@mail.ccnu.edu.cn
  • Supported by:
    This work was partially supported by the National Natural Science Foundation of China under Grant Nos.11871384(W.J.),12001034(W.H.),12001221(Y.W.),and 91630207(W.H.),by the Fundamental Research Funds for the Central Universities under Grant CCNU19TD010(Y.W.) and by the Natural Science Foundation of Hubei Province under Grant Nos.2018CFB466(W.J.) and 2020CFB221(Y.W.).

Weijie Huang, Wei Jiang, Yan Wang. A θ-L APPROACH FOR SOLVING SOLID-STATE DEWETTING PROBLEMS[J]. Journal of Computational Mathematics, 2022, 40(2): 275-293.

We propose a θ-L approach for solving a sharp-interface model about simulating solidstate dewetting of thin films with isotropic/weakly anisotropic surface energies. The sharpinterface model is governed by surface diffusion and contact line migration. For solving the model, traditional numerical methods usually suffer from the severe stability constraint and/or the mesh distribution trouble. In the θ-L approach, we introduce a useful tangential velocity along the evolving interface and utilize a new set of variables (i.e., the tangential angle θ and the total length L of the interface curve), so that it not only could reduce the stiffness resulted from the surface tension, but also could ensure the mesh equidistribution property during the evolution. Furthermore, it can achieve second-order accuracy when implemented by a semi-implicit linear finite element method. Numerical results are reported to demonstrate that the proposed θ-L approach is efficient and accurate.

CLC Number: 

[1] L. Armelao, D. Barreca, G. Bottaro, A. Gasparotto, S. Gross, C. Maragno, E. Tondello, Recent trends on nanocomposites based on Cu, Ag and Au clusters:A closer look, Coord. Chem. Rev., 250:11(2006), 1294-1314.
[2] W. Bao, W. Jiang, D.J. Srolovitz, Y. Wang, Stable equilibria of anisotropic particles on substrates:a generalized Winterbottom construction, SIAM J. Appl. Math., 77:6(2017), 2093-2118.
[3] W. Bao, W. Jiang, Y. Wang, Q. Zhao, A parametric finite element method for solid-state dewetting problems with anisotropic surface energies, J. Comput. Phys., 330(2017), 380-400.
[4] J.W. Barrett, H. Garcke and R. Nürnberg, Numerical approximation of anisotropic geometric evolution equations in the plane, IMA J. Numer. Anal., 28(2008), 292-330.
[5] J.W. Barrett, H. Garcke, R. Nürnberg, The approximation of planar curve evolutions by stable fully implicit finite element schemes that equidistribute, Numer. Methods Partial Differ. Equ., 27(2011), 1-30.
[6] J.W. Cahn, J.E. Taylor, Surface motion by surface diffusion, Acta Metall. Mater., 42(1994), 1045-1063.
[7] V. Cristini, J. Lowengrub, Q. Nie, Nonlinear simulation of tumor growth, J. Math. Biol., 46(2003), 191-224.
[8] E. Dornel, J. Barbé, F. De Crécy, G. Lacolle, J. Eymery, Surface diffusion dewetting of thin solid films:Numerical method and application to Si/SiO2, Phys. Rev. B, 73:11(2006), 115427.
[9] P. Du, M. Khenner, H. Wong, A tangent-plane marker-particle method for the computation of three dimensional solid surfaces evolving by surface diffusion on a substrate, J. Comput. Phys., 229:3(2010), 813-827.
[10] M. Dufay, O. Pierre-Louis, Anisotropy and coarsening in the instability of solid dewetting fronts, Phys. Rev. Lett., 106:10(2011), 105506.
[11] M. Dziwnik, A. Münch, B. Wagner, An anisotropic phase-field model for solid-state dewetting and its sharp-interface limit, Nonlinearity, 30(2017), 1465-1496.
[12] J. Eggleston, G. McFadden, P. Voorhees, A phase-field model for highly anisotropic interfacial energy, Physica D, 150(2001), 91-103.
[13] R.E. Goldstein, D.M. Petrich, The Korteweg-de Vries hierarchy as dynamics of closed curves in the plane, Phys. Rev. Lett., 67(1991), 3203-3206.
[1] Ram Manohar, Rajen Kumar Sinha. ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR FULLY DISCRETE SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS [J]. Journal of Computational Mathematics, 2022, 40(2): 147-176.
[2] Kaibo Hu, Ragnar Winther. WELL-CONDITIONED FRAMES FOR HIGH ORDER FINITE ELEMENT METHODS [J]. Journal of Computational Mathematics, 2021, 39(3): 333-357.
[3] Xiaodi Zhang, Weiying Zheng. MONOLITHIC MULTIGRID FOR REDUCED MAGNETOHYDRODYNAMIC EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(3): 453-470.
[4] Xiaoliang Song, Bo Chen, Bo Yu. ERROR ESTIMATES FOR SPARSE OPTIMAL CONTROL PROBLEMS BY PIECEWISE LINEAR FINITE ELEMENT APPROXIMATION [J]. Journal of Computational Mathematics, 2021, 39(3): 471-492.
[5] Xiaocui Li, Xu You. MIXED FINITE ELEMENT METHODS FOR FRACTIONAL NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(1): 130-146.
[6] Michael Holst, Yuwen Li, Adam Mihalik, Ryan Szypowski. CONVERGENCE AND OPTIMALITY OF ADAPTIVE MIXED METHODS FOR POISSON'S EQUATION IN THE FEEC FRAMEWORK [J]. Journal of Computational Mathematics, 2020, 38(5): 748-767.
[7] Weifeng Zhang, Shuo Zhang. ORDER REDUCED METHODS FOR QUAD-CURL EQUATIONS WITH NAVIER TYPE BOUNDARY CONDITIONS [J]. Journal of Computational Mathematics, 2020, 38(4): 565-579.
[8] Qilong Zhai, Xiaozhe Hu, Ran Zhang. THE SHIFTED-INVERSE POWER WEAK GALERKIN METHOD FOR EIGENVALUE PROBLEMS [J]. Journal of Computational Mathematics, 2020, 38(4): 606-623.
[9] Juncai He, Lin Li, Jinchao Xu, Chunyue Zheng. RELU DEEP NEURAL NETWORKS AND LINEAR FINITE ELEMENTS [J]. Journal of Computational Mathematics, 2020, 38(3): 502-527.
[10] Jie Chen, Zhengkang He, Shuyu Sun, Shimin Guo, Zhangxin Chen. EFFICIENT LINEAR SCHEMES WITH UNCONDITIONAL ENERGY STABILITY FOR THE PHASE FIELD MODEL OF SOLID-STATE DEWETTING PROBLEMS [J]. Journal of Computational Mathematics, 2020, 38(3): 452-468.
[11] Li Cai, Ye Sun, Feifei Jing, Yiqiang Li, Xiaoqin Shen, Yufeng Nie. A FULLY DISCRETE IMPLICIT-EXPLICIT FINITE ELEMENT METHOD FOR SOLVING THE FITZHUGH-NAGUMO MODEL [J]. Journal of Computational Mathematics, 2020, 38(3): 469-486.
[12] Huoyuan Duan, Roger C. E. Tan. ERROR ANALYSIS OF A STABILIZED FINITE ELEMENT METHOD FOR THE GENERALIZED STOKES PROBLEM [J]. Journal of Computational Mathematics, 2020, 38(2): 254-290.
[13] Carsten Carstensen, Sophie Puttkammer. HOW TO PROVE THE DISCRETE RELIABILITY FOR NONCONFORMING FINITE ELEMENT METHODS [J]. Journal of Computational Mathematics, 2020, 38(1): 142-175.
[14] Yu Du, Haijun Wu, Zhimin Zhang. SUPERCONVERGENCE ANALYSIS OF THE POLYNOMIAL PRESERVING RECOVERY FOR ELLIPTIC PROBLEMS WITH ROBIN BOUNDARY CONDITIONS [J]. Journal of Computational Mathematics, 2020, 38(1): 223-238.
[15] Weijie Huang, Zhiping Li. A MIXED FINITE ELEMENT METHOD FOR MULTI-CAVITY COMPUTATION IN INCOMPRESSIBLE NONLINEAR ELASTICITY [J]. Journal of Computational Mathematics, 2019, 37(5): 609-628.
Viewed
Full text


Abstract