Previous Articles     Next Articles

ADAPTIVE FINITE ELEMENT APPROXIMATION FOR A CLASS OF PARAMETER ESTIMATION PROBLEMS

Karl Kunisch1, Wenbin Liu2, Yanzhen Chang3, Ningning Yan3, Ruo Li4   

  1. 1. Department of Mathematics, University of Graz, Austria;
    2. KBS, University of Kent,Canterbury, CT2 7NF, England;
    3. LSEC, Academy of Mathematics and Systems Science,Chinese Academy of Sciences, Beijing, China;
    4. Department of Computational Mathematics, Peking University, China+H8
  • Received:2009-03-09 Revised:1900-01-01 Online:2010-09-15 Published:2010-09-15

Karl Kunisch, Wenbin Liu, Yanzhen Chang, Ningning Yan, Ruo Li. ADAPTIVE FINITE ELEMENT APPROXIMATION FOR A CLASS OF PARAMETER ESTIMATION PROBLEMS[J]. Journal of Computational Mathematics, DOI: 10.4208/jcm.2009.10-m1016.

In this paper, we study adaptive finite element discretisation schemes for a class of parameter estimation problem. We propose to use adaptive multi-meshes in developing efficient algorithms for the estimation problem. We derive equivalent a posteriori error estimators for both the state and the control approximation, which particularly suit an adaptive multi-mesh finite element scheme. The error estimators are then implemented and tested with promising numerical results.

CLC Number: 

[1] Ram Manohar, Rajen Kumar Sinha. ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR FULLY DISCRETE SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS [J]. Journal of Computational Mathematics, 2022, 40(2): 147-176.
[2] Pengzhan Huang, Yinnian He, Ting Li. A FINITE ELEMENT ALGORITHM FOR NEMATIC LIQUID CRYSTAL FLOW BASED ON THE GAUGE-UZAWA METHOD [J]. Journal of Computational Mathematics, 2022, 40(1): 26-43.
[3] Yuping Zeng, Feng Wang, Zhifeng Weng, Hanzhang Hu. A POSTERIORI ERROR ESTIMATES FOR A MODIFIED WEAK GALERKIN FINITE ELEMENT APPROXIMATION OF SECOND ORDER ELLIPTIC PROBLEMS WITH DG NORM [J]. Journal of Computational Mathematics, 2021, 39(5): 755-776.
[4] Michael Holst, Yuwen Li, Adam Mihalik, Ryan Szypowski. CONVERGENCE AND OPTIMALITY OF ADAPTIVE MIXED METHODS FOR POISSON'S EQUATION IN THE FEEC FRAMEWORK [J]. Journal of Computational Mathematics, 2020, 38(5): 748-767.
[5] Tianliang Hou, Yanping Chen. MIXED DISCONTINUOUS GALERKIN TIME-STEPPING METHOD FOR LINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS [J]. Journal of Computational Mathematics, 2015, 33(2): 158-178.
[6] Yuping Zeng, Jinru Chen, Feng Wang, Yanxia Meng. A PRIORI AND A POSTERIORI ERROR ESTIMATES OF A WEAKLY OVER-PENALIZED INTERIOR PENALTY METHOD FOR NON-SELF-ADJOINT AND INDEFINITE PROBLEMS [J]. Journal of Computational Mathematics, 2014, 32(3): 332-347.
[7] Yanzhen Chang, Danping Yang. A POSTERIORI ERROR ESTIMATE OF FINITE ELEMENT METHOD FOR THE OPTIMAL CONTROL WITH THE STATIONARY BÉNARD PROBLEM [J]. Journal of Computational Mathematics, 2013, 31(1): 68-87.
[8] Tatyana Luzyanina, Gennady Bocharov. CRITICAL ISSUES IN THE NUMERICAL TREATMENT OF THE PARAMETER ESTIMATION PROBLEMS IN IMMUNOLOGY [J]. Journal of Computational Mathematics, 2012, 30(1): 59-79.
[9] Tang Liu, Ningning Yan and Shuhua Zhang. RICHARDSON EXTRAPOLATION AND DEFECT CORRECTION OF FINITE ELEMENT
METHODS FOR OPTIMAL CONTROL PROBLEMS
[J]. Journal of Computational Mathematics, 2010, 28(1): 55-71.
[10] R.H.W. Hoppe, J. Sch\. CONVERGENCE OF ADAPTIVE EDGE ELEMENT METHODS FOR THE 3D EDDY CURRENTS EQUATIONS [J]. Journal of Computational Mathematics, 2009, 27(5): 657-676.
[11] Yanping Chen, Yao Fu, Huanwen Liu, Yongquan Dai and Huayi Wei. RECOVERY A POSTERIORI ERROR ESTIMATES FOR GENERAL CONVEX ELLIPTIC OPTIMAL CONTROL PROBLEMS SUBJECT TO POINTWISE CONTROL ONSTRAINTS [J]. Journal of Computational Mathematics, 2009, 27(4): 543-560.
[12] Lei Yuan, Danping Yang. A POSTERIORI ERROR ESTIMATE OF OPTIMAL CONTROL PROBLEM OF PDE WITH INTEGRAL CONSTRAINT FOR STATE [J]. Journal of Computational Mathematics, 2009, 27(4): 525-542.
[13] Michael Hinze, Ningning Yan, Zhaojie Zhou. Variational Discretization for Optimal Control Governed by Convection Dominated Diffusion Equations [J]. Journal of Computational Mathematics, 2009, 27(2-3): 237-253.
[14] Dietrich Braess, Carsten Carstensen, Ronald H.W. Hoppe.

Error Reduction in Adaptive Finite Element Approximations of Elliptic Obstacle Problems

[J]. Journal of Computational Mathematics, 2009, 27(2-3): 148-169.
[15] Xiaobing Feng Haijun Wu. A Posteriori Error Estimates for Finite Element Approximations of the Cahn-Hilliard Equation and the Hele-Shaw Flow [J]. Journal of Computational Mathematics, 2008, 26(6): 767-796.
Viewed
Full text


Abstract