Previous Articles Next Articles
Jiang Qian^{1}, Xiquan Shi^{2}, Jinming Wu^{3}, Dianxuan Gong^{4}
Jiang Qian, Xiquan Shi, Jinming Wu, Dianxuan Gong. CONSTRUCTION OF CUBATURE FORMULAS VIA BIVARIATE QUADRATIC SPLINE SPACES OVER NONUNIFORM TYPE2 TRIANGULATION[J]. Journal of Computational Mathematics, 2022, 40(2): 205230.
[1] C. Allouch, and P. Sablonnièere, Iteration methods for Fredholm integral equations of the second kind based on spline quasiinterpolants, Math. Comput. Simul., 99(2014), 1927. [2] S. Brenner, and L. Scott, The Mathematical Theory of Finite Element Methods, Third Edition, Springer Press, 2008. [3] C. Dagnino, and P. Lamberti, On the approximation power of bivariate quadratic C^{1} splines, J. Comput. and Appl. Math., 131(2001), 321332. [4] C. Dagnino, and P. Lamberti, Some performances of local bivariate quadratic C^{1} quasiinterpolating splines on nonuniform type2 triangulations, J. Comput. and Appl. Math., 173(2005), 2137. [5] C. Dagnino, and S. Remogna, On the solution of Fredholm integral equations based on spline quasiinterpolating projectors, BIT Numer. Math., 54(2014), 9791008. [6] C. Dagnino, and S. Remogna, Quasiinterpolation based on the ZPelement for the numerical solution of integral equations on surfaces in R^{3}, BIT Numer. Math., 57(2017), 329350. [7] J.S. Deng, Y.Y. Feng, and J. Kozak, A note on the dimension of the bivariate spline space over the MorganScott triangulation, SIAM J. Numer. Anal., 37:3(2000), 10211028. [8] G. Farin, Triangular BernsteinBézier, Comput. Aided Geom. Des., 3:2(1986), 83127. [9] G. Farin, Curves and Surfaces for Computer Aided Geometric Design, A Practical Guide, Academic Press, Boston, 1992. [10] P. Lamberti, Numerical integration based on bivariate quadratic spline quasiinterpolants on bounded domains, BIT Numer. Math., 49(2009), 565588. [11] C.J. Li, and J. Chen, On the dimensions of bivariate spline spaces and their stability, J. Comput. and Appl. Math., 236(2011), 765774. [12] C.J. Li, and R.H. Wang, Bivariate cubic spline space and bivariate cubic NURBS surfaces, Proceedings of Geometric Modeling and Processing 2004, IEEE Computer Society Pressvol, 115123. [13] J. Qian, F. Wang, On the approximation of the derivatives of spline quasiinterpolation in cubic spline space S_{3}^{1,2}(Δ_{mn}^{(2)}), Numer. Math. Theor. Meth. Appl., 7:1(2014), 122. [14] J. Qian, R.H. Wang, C.J. Li, The bases of the Nonuniform cubic spline space S_{3}^{1,2}(Δ_{mn}^{(2)}), Numer. Math. Theor. Meth. Appl., 5:4(2012), 635652. [15] J. Qian, R.H. Wang, C.G. Zhu, F. Wang, On spline quasiinterpolation in cubic spline space S_{3}^{1,2} (Δ_{mn}^{(2)}), Sci Sin Math, 44:7(2014), 769778(in Chinese). [16] K. Qu, M. Zhang, N. Wang, and J. Xuan, Bivariate spline finite element solver for linear hyperbolic equations in twodimensional spaces, Wireless Pers. Commun., 102(2018), 30673077. [17] L.L. Schumaker, Spline Functions:Basic Theory, Krieger Publishing Company, Malabar FL, 1993. [18] X.Q. Shi, The singularity of MorganScott triangulation, Comput. Aided Geom. Design, 8(1991), 201206. [19] G.J Wang, G.Z. Wang, and J.M. Zheng, Computer Aided Geometric Design, China Higher Education Press/SpringVerlag Berlin, Beijing/Heidelberg, 2001, (in Chinese). [20] R.H. Wang, The structural characterization and interpolation for multivariate splines, Acta Math. Sinica, 18(1975), 91106, (in Chinese). [21] R.H. Wang, X.Q. Shi, Z.X. Luo, and Z.X. Su, Multivariate Spline Functions and Their Applications, Science Press/Kluwer Academic Publishers, Beijing, New York, Dordrecht, Boston, London, 2001. [22] R.H. Wang, and C.J. Li, Bivariate quartic spline spaces and quasiinterpolation operators, J. Comput. and Appl. Math., 190(2006), 325338. [23] R.H. Wang, and Y. Lu, Quasiinterpolating operators and their applications in hypersingular integrals, J. Comput. Math., 16:4(1998), 337344. [24] R.H. Wang, and Y. Lu, Quasiinterpolating operators in S_{2}^{1}(Δ_{mn}^{2} *) on nonuniform type2 triangulations, Numer. Math. A J. of Chinese Universities, 2(1999), 97103. [25] Z.Q. Xu, and R.H. Wang, The instability degree in the dimension of spaces of bivariate spline, Approx. Theory and Appl., 18:1(2002), 6880. 
[1]  Chungang Zhu, Renhong Wang. Piecewise Semialgebraic Sets [J]. Journal of Computational Mathematics, 2005, 23(5): 503512. 
[2]  Renhong Wang , You Lu. QUASIINTERPOLATING OPERATORS AND THEIR APPLICATIONS IN HYPERSINGULARINTEGRALS [J]. Journal of Computational Mathematics, 1998, 16(4): 337344. 
Viewed  
Full text 


Abstract 

