Previous Articles Next Articles
Lu Zhang^{1}, Qifeng Zhang^{2}, Haiwei Sun^{3}
Lu Zhang, Qifeng Zhang, Haiwei Sun. A FAST COMPACT DIFFERENCE METHOD FOR TWODIMENSIONAL NONLINEAR SPACEFRACTIONAL COMPLEX GINZBURGLANDAU EQUATIONS[J]. Journal of Computational Mathematics, 2021, 39(5): 708732.
[1] I.S. Aranson, L. Kramer, The world of the complex GinzburgLandau equation, Reviews of Modern Physics, 74(2002), 99143. [2] S. Arshed, Soliton solutions of fractional complex GinzburgLandau equation with Kerr law and nonKerr law media, Optik, 160(2018), 322332. [3] C. Çelik, M. Duman, CrankNicolson method for the fractional diffusion equation with the Riesz fractional derivative, Journal of Computational Physics, 231:4(2012), 17431750. [4] R. Chan, X.Q. Jin, An Introduction to Iterative Toeplitz Solvers, SIAM, Philadelphia, 2007. [5] R. Chan, M. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Review, 38(1996), 427482. [6] X. Cheng, H. Qin, J. Zhang, A compact ADI scheme for twodimensional fractional subdiffusion equation with Neumann boundary condition, Applied Numerical Mathematics, 156(2020), 5062. [7] R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals, McGrawHill, New York, 1965. [8] R. Gorenflo, F. Mainardi, Random walk models for spacefractional diffusion processes, Fractional Calculus and Applied Analysis, 1:2(1998), 167191. [9] X.M. Gu, L. Shi, T.H. Liu, Wellposedness of the fractional GinzburgLandau equation, Applicable Analysis, 98:14(2018), 25452558. [10] B.L. Guo, Z.H. Huo, Wellposedness for the nonlinear fractional Schrödinger equation and inviscid limit behavior of solution for the fractional GinzburgLandau equation, Fractional Calculus and Applied Analysis, 16:1(2013), 226242. [11] D.D. He, K.J. Pan, An unconditionally stable linearized difference scheme for the fractional GinzburgLandau equation, Numerical Algorithms, 79:3(2018), 899925. [12] X.Q. Jin, Developments and Applications of Block Toeplitz Iterative Solvers. Science Press & Kluwer Academic Publishers, Beijing/Dordrecht, The Netherlands, 2002. [13] N. Laskin, Fractional quantum mechanics, Physical Review E, 62(2000), 31353145. [14] N. Laskin, Fractional quantum mechanics and Lévy path integrals, Physics Letters A, 268(2000), 298305. [15] M. Li, C.M. Huang, An efficient difference scheme for the coupled nonlinear fractional GinzburgLandau equations with the fractional Laplacian, Numerical Methods for Partial Differential Equations, 35:1(2019), 394421. [16] M. Li, C.M. Huang, N. Wang, Galerkin element method for the nonlinear fractional GinzburgLandau equation, Applied Numerical Mathematics, 118(2017), 131149. [17] H.L. Liao, Z.Z. Sun, H.S. Shi, Error estimate of fourthordercompact scheme for linear Schrödinger equations, SIAM Journal on Numerical Analysis, 47(6) (2010), 43814401. [18] W.J. Liu, W.T. Yu, C.Y. Yang, M.L. Liu, Y.J. Zhang, M. Lei, Analytic solutions for the generalized complex GinzburgLandau equation in fiber lasers, Nonlinear Dynamics, 89(2017), 29332939. [19] H. Lu, P.W. Bates, S.J. Lü, M.J. Zhang, Dynamics of the 3D fractional complex GinzburgLandau equation, Journal Differential Equations, 259(2015), 52765301. [20] H. Lu, S.J. Lü, Asymptotic dynamics of 2D fractional complex GinzburgLandau equation, International Journal of Bifurcation and Chaos, 23:2(2013), 1350202. [21] H. Lu, S.J. Lü, Random attractor for fractional GinzburgLandau equation with multiplicative noise, Taiwanese Journal of Mathematics, 18:2(2014), 435450. [22] H. Lu, S.J. Lü, M.J. Zhang, Fourier spectral approximations to the dynamics of 3D fractional complex GinzburgLandau equation, Discrete and Continuous Dynamical Systems, 37:5(2017), 25392564. [23] V. Millot, Y. Sire, On a fractional GinzburgLandau equation and 1/2Harmonic maps into spheres, Archive for Rational Mechanics and Analysis, 215(2015), 125210. [24] A. Mohebbi, Fast and highorder numerical algorithms for the solution of multidimensional nonlinear fractional GinzburgLandau equation, The European Physical Journal Plus, 133:2(2018), 67, https://doi.org/10.1140/epjp/i201811846x [25] I. Podlubny, Fractional Differential Equations, Academic Press, New York, 1999. [26] X.K. Pu, B.L. Guo, Wellposedness and dynamics for the fractional GinzburgLandau equation, Applicable Analysis, 92:2(2013), 3133. [27] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, 2003. [28] J. Shu, P. Li, J. Zhang, O. Liao, Random attractors for the stochastic coupled fractional GinzburgLandau equation with additive noise, Journal of Mathematical Physics, 56(2015), 102702. [29] Z.Z. Sun, The Method of Order Reduction and Its Application to the Numerical Solutions of Partial Differential Equations, Science Press, Beijing, 2009. [30] V. Tarasov, G. Zaslavsky, Fractional dynamics of coupled oscillators with longrange interaction, Chaos, 16(2006), 023110. [31] V. Tarasov, G. Zaslavsky, Fractional GinzburgLandau equation for fractal media, Physica A, 354(2005), 249261. [32] N. Wang, C.M. Huang, An efficient splitstep quasicompact finite difference method for the nonlinear fractional GinzburgLandau equations, Computers and Mathematics with Applications, 75(2018), 22232242. [33] P.D. Wang, C.M. Huang, An efficient fourthorder in space difference scheme for the nonlinear fractional GinzburgLandau equation, BIT Numerical Mathematics, 58:3(2018), 783805. [34] P.D. Wang, C.M. Huang, An implicit midpoint difference scheme for the fractional GinzburgLandau equation, Journal of Computational Physics, 312(2016), 3149. [35] Y.S. Wu, Multiparticle quantum mechanics obeying fractional statistics, Physical Review Letters, 53(1984), 111114. [36] J.W. Zhang, H.D. Han, H. Brunner, Numerical blowup of semilinear parabolic PDEs on unbounded domains in $\mathbb{R}$^{2}, Journal of Scientific Computing, 49(3) (2019), 367382. [37] J.W. Zhang, Z.L. Xu, X.N. Wu, Unified approach to split absorbing boundary conditions for nonlinear Schrödinger equations:Twodimensional case, Physical Review E, 79(4) (2009), 046711. [38] M. Zhang, G.F. Zhang, L.D. Liao, Fast iterative solvers and simulation for the space fractional GinzburgLandau equations GinzburgLandau equations, Computers and Mathematics with Applications, 78:5(2019), 17931800. [39] Q. Zhang, T. Li, Asymptotic stability of compact and linear θmethods for space fractional delay generalized diffusion equation, Journal of Scientific Computing, 81(2019), 24132446. [40] Q. Zhang, X. Lin, K. Pan, Y. Ren, Linearized ADI schemes for twodimensional spacefractional nonlinear GinzburgLandau equation, Computers and Mathematics with Applications, 80(2020), 12011220. [41] Q. Zhang, Y. Ren, X. Lin, Y. Xu, Uniform convergence of compact and BDF methods for the space fractional semilinear delay reactiondiffusion equations, Applied Mathematics and Computation, 358(2019), 91110. [42] X. Zhao, Z.Z. Sun, Z.P. Hao, A fourthorder compact ADI scheme for twodimensional nonlinear space fractional Schrödinger equation, SIAM Journal on Scientific Computing, 36:6(2014), 28652886. 
[1]  Xiaoyu Wang, Yaxiang Yuan. STOCHASTIC TRUSTREGION METHODS WITH TRUSTREGION RADIUS DEPENDING ON PROBABILISTIC MODELS [J]. Journal of Computational Mathematics, 2022, 40(2): 294334. 
[2]  Mohammed Harunor Rashid. METRICALLY REGULAR MAPPING AND ITS UTILIZATION TO CONVERGENCE ANALYSIS OF A RESTRICTED INEXACT NEWTONTYPE METHOD [J]. Journal of Computational Mathematics, 2022, 40(1): 4469. 
[3]  Yang Chen, Chunlin Wu. DATADRIVEN TIGHT FRAME CONSTRUCTION FOR IMPULSIVE NOISE REMOVAL [J]. Journal of Computational Mathematics, 2022, 40(1): 89107. 
[4]  Qianqian Chu, Guanghui Jin, Jihong Shen, Yuanfeng Jin. NUMERICAL ANALYSIS OF CRANKNICOLSON SCHEME FOR THE ALLENCAHN EQUATION [J]. Journal of Computational Mathematics, 2021, 39(5): 655665. 
[5]  Yifen Ke, Changfeng Ma. MODIFIED ALTERNATING POSITIVE SEMIDEFINITE SPLITTING PRECONDITIONER FOR TIMEHARMONIC EDDY CURRENT MODELS [J]. Journal of Computational Mathematics, 2021, 39(5): 733754. 
[6]  Xia Cui, Guangwei Yuan, Fei Zhao. ANALYSIS ON A NUMERICAL SCHEME WITH SECONDORDER TIME ACCURACY FOR NONLINEAR DIFFUSION EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(5): 777800. 
[7]  Yong Liu, ChiWang Shu, Mengping Zhang. SUBOPTIMAL CONVERGENCE OF DISCONTINUOUS GALERKIN METHODS WITH CENTRAL FLUXES FOR LINEAR HYPERBOLIC EQUATIONS WITH EVEN DEGREE POLYNOMIAL APPROXIMATIONS [J]. Journal of Computational Mathematics, 2021, 39(4): 518537. 
[8]  Xiaobing Feng, Yukun Li, Yi Zhang. STRONG CONVERGENCE OF A FULLY DISCRETE FINITE ELEMENT METHOD FOR A CLASS OF SEMILINEAR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS WITH MULTIPLICATIVE NOISE [J]. Journal of Computational Mathematics, 2021, 39(4): 574598. 
[9]  Bin Huang, Aiguo Xiao, Gengen Zhang. IMPLICITEXPLICIT RUNGEKUTTAROSENBROCK METHODS WITH ERROR ANALYSIS FOR NONLINEAR STIFF DIFFERENTIAL EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(4): 599620. 
[10]  Yaozong Tang, Qingzhi Yang, Gang Luo. CONVERGENCE ANALYSIS ON SSHOPM FOR BECLIKE NONLINEAR EIGENVALUE PROBLEMS [J]. Journal of Computational Mathematics, 2021, 39(4): 621632. 
[11]  Daniele Boffi, Zhongjie Lu, Luca F. Pavarino. ITERATIVE ILU PRECONDITIONERS FOR LINEAR SYSTEMS AND EIGENPROBLEMS [J]. Journal of Computational Mathematics, 2021, 39(4): 633654. 
[12]  Kaibo Hu, Ragnar Winther. WELLCONDITIONED FRAMES FOR HIGH ORDER FINITE ELEMENT METHODS [J]. Journal of Computational Mathematics, 2021, 39(3): 333357. 
[13]  Yuting Chen, Mingyuan Cao, Yueting Yang, Qingdao Huang. AN ADAPTIVE TRUSTREGION METHOD FOR GENERALIZED EIGENVALUES OF SYMMETRIC TENSORS [J]. Journal of Computational Mathematics, 2021, 39(3): 358374. 
[14]  Keke Zhang, Hongwei Liu, Zexian Liu. A NEW ADAPTIVE SUBSPACE MINIMIZATION THREETERM CONJUGATE GRADIENT ALGORITHM FOR UNCONSTRAINED OPTIMIZATION [J]. Journal of Computational Mathematics, 2021, 39(2): 159177. 
[15]  Huaijun Yang, Dongyang Shi, Qian Liu. SUPERCONVERGENCE ANALYSIS OF LOW ORDER NONCONFORMING MIXED FINITE ELEMENT METHODS FOR TIMEDEPENDENT NAVIERSTOKES EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(1): 6380. 
Viewed  
Full text 


Abstract 

