Previous Articles Next Articles
Zhouhong Wang^{1}, Yuhong Dai^{2,3}, Fengmin Xu^{4}
Zhouhong Wang, Yuhong Dai, Fengmin Xu. A ROBUST INTERIOR POINT METHOD FOR COMPUTING THE ANALYTIC CENTER OF AN ILLCONDITIONED POLYTOPE WITH ERRORS[J]. Journal of Computational Mathematics, 2019, 37(6): 843865.
[1] D.S. Atkinson and P.M. Vaidya, A scaling technique for finding the weighted analytic center of a polytope, Mathematical Programming, 57(1992), 163192. [2] M.S. Bazaraa, H.D. Sherali and C.M. Shetty, Nonlinear Programming:Theory and Algorithms, 3rd edition, John Wiley & Sons, New Jersey, 2006. [3] J.F. Bonnans and C.C. Gonzaga, Convergence of interior point algorithms for the monotone linear complementarity problem, Mathematics of Operations Research, 21(1996), 125. [4] J.F. Bonnans and F.A. Potra, On the convergence of the iteration sequence of infeasible path following algorithms for linear complementarity problems, Mathematics of Operations Research, 22(1997), 378407. [5] S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, 2004. [6] Y.H. Dai, Z.H. Wang and F.M. Xu, A primaldual method for unfolding neutron energy spectrum from multiple activation foils, Research report, AMSS, Chinese Academy of Sciences, 2018. [7] C.C. Gonzaga, The largest step path following algorithm for monotone linear complementarity problems, Mathematical Programming, 76(1997), 309332. [8] C.C. Gonzaga and R.A. Tapia, On the convergence of the MizunoToddYe algorithm to the analytic center of the solution set, SIAM Journal on Optimization, 7(1997), 4765. [9] M.D. GonzálezLima, R.A. Tapia and F.A. Potra, On effectively computing the analytic center of the solution set by primaldual interiorpoint methods, SIAM Journal on Optimization, 8(1998), 125. [10] M. Kojima, N. Megiddo and S. Mizuno, A primaldual infeasibleinteriorpoint algorithm for linear programming, Mathematical Programming, 61(1993), 263280. [11] M. Kojima, S. Mizuno and A. Yoshise, A primaldual interior point algorithm for linear programming, in Progress in Mathematical Programming:InteriorPoint and Related Methods, N. Megiddo (ed.), Springer, New York, 1989, 2947. [12] I.J. Lustig, R.E. Marsten and D.F. Shanno, On implementing Mehrotra's predictorcorrector interiorpoint method for linear programming, SIAM Journal on Optimization, 2(1992), 435449. [13] N. Megiddo, Pathways to the optimal set in linear programming, in Progress in Mathematical Programming:InteriorPoint and Related Methods, N. Megiddo (ed.), Springer, New York, 1989, 131158. [14] S. Mehrotra, On the implementation of a primaldual interior point method, SIAM Journal on Optimization, 2(1992), 575601. [15] S. Mehrotra, Quadratic convergence in a primaldual method, Mathematics of Operations Research, 18(1993), 741751. [16] S. Mizuno, Polynomiality of infeasibleinteriorpoint algorithms for linear programming, Mathematical Programming, 67(1994), 109119. [17] S. Mizuno, M.J. Todd and Y. Ye, On adaptivestep primaldual interiorpoint algorithms for linear programming, Mathematics of Operations Research, 18(1993), 964981. [18] S. Mizuno, M.J. Todd and Y. Ye, A Surface of Analytic Centers and PrimalDual InfeasibleInteriorPoint Algorithms for Linear Programming, Mathematics of Operations Research, 20(1995), 135162. [19] R. Monteiro, J. O'Neal and T. Tsuchiya, Uniform boundedness of a preconditioned normal matrix used in interiorpoint methods, SIAM Journal on Optimization, 15(2004), 96100. [20] A. Oliveira and D. Sorensen, A new class of preconditioners for largescale linear systems from interior point methods for linear programming, Linear Algebra and its Applications, 394(2005), 124. [21] F. Potra, An infeasibleinteriorpoint predictorcorrector algorithm for linear programming, SIAM Journal on Optimization, 6(1996), 1932. [22] J. Renegar, A Mathematical View of InteriorPoint Methods in Convex Optimization, SIAM, Philadelphia, 2001. [23] C. Roos, A fullnewton step o(n) infeasible interiorpoint algorithm for linear optimization, SIAM Journal on Optimization, 16(2006), 11101136. [24] C. Roos, T. Terlaky and J.P. Vial, Interior Point Methods for Linear Optimization, 2nd edition, Springer, Berlin, 2005. [25] A. Wächter and L.T. Biegler, On the implementation of an interiorpoint filter linesearch algorithm for largescale nonlinear programming, Mathematical Programming, 106(2006), 2557. [26] Y. Wang, Y. Yuan and H. Zhang, A trust regionCG algorithm for deblurring problem in atmospheric image reconstruction, Science in China Series A:Mathematics, 45(2002), 731740. [27] M. Wright, Illconditioning and computational error in interior methods for nonlinear programming, SIAM Journal on Optimization, 9(1998), 84111. [28] S.J. Wright, PrimalDual InteriorPoint Methods, SIAM, Philadelphia, 1996. [29] S.J. Wright, Effects of finiteprecision arithmetic on interiorpoint methods for nonlinear programming, SIAM Journal on Optimization, 12(2001), 3678. [30] Y. Ye, Interior Point Algorithms:Theory and Analysis, John Wiley & Sons, New Jersey, 1997. [31] Y. Ye, O. Güler, R.A. Tapia and Y. Zhang, A quadratically convergent O(√nL)iteration algorithm for linear programming, Mathematical Programming, 59(1993), 151162. [32] Y. Ye, M.J. Todd and S. Mizuno, An O(√nL)iteration homogeneous and selfdual linear programming algorithm, Mathematics of Operations Research, 19(1994), 5367. [33] Y. Zhang, On the convergence of a class of infeasible interiorpoint methods for the horizontal linear complementarity problem, SIAM Journal on Optimization, 4(1994), 208227. [34] Y. Zhang, Solving largescale linear programs by interiorpoint methods under the MATLAB environment, Optimization Methods and Software, 10(1998), 131. [35] Y. Zhangsun, Unfolding Method Based on Entropy Theory for the Determination of Neutron Spectrum (in Chinese), Master's thesis, Northwest Institute of Nuclear Technology, Xi'an, Shanxi, P. R. China, 2015. 
[1]  Xiaoyu Wang, Yaxiang Yuan. STOCHASTIC TRUSTREGION METHODS WITH TRUSTREGION RADIUS DEPENDING ON PROBABILISTIC MODELS [J]. Journal of Computational Mathematics, 2022, 40(2): 294334. 
[2]  Mohammed Harunor Rashid. METRICALLY REGULAR MAPPING AND ITS UTILIZATION TO CONVERGENCE ANALYSIS OF A RESTRICTED INEXACT NEWTONTYPE METHOD [J]. Journal of Computational Mathematics, 2022, 40(1): 4469. 
[3]  Yang Chen, Chunlin Wu. DATADRIVEN TIGHT FRAME CONSTRUCTION FOR IMPULSIVE NOISE REMOVAL [J]. Journal of Computational Mathematics, 2022, 40(1): 89107. 
[4]  Qianqian Chu, Guanghui Jin, Jihong Shen, Yuanfeng Jin. NUMERICAL ANALYSIS OF CRANKNICOLSON SCHEME FOR THE ALLENCAHN EQUATION [J]. Journal of Computational Mathematics, 2021, 39(5): 655665. 
[5]  Lu Zhang, Qifeng Zhang, Haiwei Sun. A FAST COMPACT DIFFERENCE METHOD FOR TWODIMENSIONAL NONLINEAR SPACEFRACTIONAL COMPLEX GINZBURGLANDAU EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(5): 708732. 
[6]  Xia Cui, Guangwei Yuan, Fei Zhao. ANALYSIS ON A NUMERICAL SCHEME WITH SECONDORDER TIME ACCURACY FOR NONLINEAR DIFFUSION EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(5): 777800. 
[7]  Yong Liu, ChiWang Shu, Mengping Zhang. SUBOPTIMAL CONVERGENCE OF DISCONTINUOUS GALERKIN METHODS WITH CENTRAL FLUXES FOR LINEAR HYPERBOLIC EQUATIONS WITH EVEN DEGREE POLYNOMIAL APPROXIMATIONS [J]. Journal of Computational Mathematics, 2021, 39(4): 518537. 
[8]  Xiaobing Feng, Yukun Li, Yi Zhang. STRONG CONVERGENCE OF A FULLY DISCRETE FINITE ELEMENT METHOD FOR A CLASS OF SEMILINEAR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS WITH MULTIPLICATIVE NOISE [J]. Journal of Computational Mathematics, 2021, 39(4): 574598. 
[9]  Bin Huang, Aiguo Xiao, Gengen Zhang. IMPLICITEXPLICIT RUNGEKUTTAROSENBROCK METHODS WITH ERROR ANALYSIS FOR NONLINEAR STIFF DIFFERENTIAL EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(4): 599620. 
[10]  Yaozong Tang, Qingzhi Yang, Gang Luo. CONVERGENCE ANALYSIS ON SSHOPM FOR BECLIKE NONLINEAR EIGENVALUE PROBLEMS [J]. Journal of Computational Mathematics, 2021, 39(4): 621632. 
[11]  Yuting Chen, Mingyuan Cao, Yueting Yang, Qingdao Huang. AN ADAPTIVE TRUSTREGION METHOD FOR GENERALIZED EIGENVALUES OF SYMMETRIC TENSORS [J]. Journal of Computational Mathematics, 2021, 39(3): 358374. 
[12]  Keke Zhang, Hongwei Liu, Zexian Liu. A NEW ADAPTIVE SUBSPACE MINIMIZATION THREETERM CONJUGATE GRADIENT ALGORITHM FOR UNCONSTRAINED OPTIMIZATION [J]. Journal of Computational Mathematics, 2021, 39(2): 159177. 
[13]  Huaijun Yang, Dongyang Shi, Qian Liu. SUPERCONVERGENCE ANALYSIS OF LOW ORDER NONCONFORMING MIXED FINITE ELEMENT METHODS FOR TIMEDEPENDENT NAVIERSTOKES EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(1): 6380. 
[14]  Yongtao Zhou, Chengjian Zhang, Huiru Wang. BOUNDARY VALUE METHODS FOR CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(1): 108129. 
[15]  Xiaocui Li, Xu You. MIXED FINITE ELEMENT METHODS FOR FRACTIONAL NAVIERSTOKES EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(1): 130146. 
Viewed  
Full text 


Abstract 

