Previous Articles     Next Articles

SUPERCONVERGENCE ANALYSIS OF LOW ORDER NONCONFORMING MIXED FINITE ELEMENT METHODS FOR TIME-DEPENDENT NAVIER-STOKES EQUATIONS

Huaijun Yang1, Dongyang Shi2, Qian Liu2   

  1. 1. School of Mathematics, Zhengzhou University of Aeronautics, Zhengzhou 450046, China;
    2. School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China
  • Received:2018-12-02 Revised:2019-05-12 Online:2021-01-15 Published:2021-03-11
  • Supported by:
    This work is supported by National Natural Science Foundation of China (Nos. 11671369; 11271340).

Huaijun Yang, Dongyang Shi, Qian Liu. SUPERCONVERGENCE ANALYSIS OF LOW ORDER NONCONFORMING MIXED FINITE ELEMENT METHODS FOR TIME-DEPENDENT NAVIER-STOKES EQUATIONS[J]. Journal of Computational Mathematics, 2021, 39(1): 63-80.

In this paper, the superconvergence properties of the time-dependent Navier-Stokes equations are investigated by a low order nonconforming mixed finite element method (MFEM). In terms of the integral identity technique, the superclose error estimates for both the velocity in broken H1-norm and the pressure in L2-norm are first obtained, which play a key role to bound the numerical solution in L-norm. Then the corresponding global superconvergence results are derived through a suitable interpolation postprocessing approach. Finally, some numerical results are provided to demonstrated the theoretical analysis.

CLC Number: 

[1] V. Girault, P.A. Raviart, Finite element method for Naviet-Stokes equations:Theory and Algorithms, Springer-Verlag, Berlin, 1987.
[2] R. Teman, Navier-Stokes equations:Theory and Numerical analysis, North Holland, Amsterdam, New-York-Oxford, 1977.
[3] C. Wang, J.G. Liu, Analysis of finite difference schemes for unsteady Navier-Stokes equations in vorticity formulation, Numer. Math., 91(2002), 543-576.
[4] Z.L. Li, C. Wang, A fast finite difference method for solving Navier-Stokes equations on irregular domains, Communications in Math. Sci., 1(2003), 181-197.
[5] T.Y. Hou, B.T.R. Wetton, Convergence of a finite difference scheme for the Navier-Stokes equations using vorticity boundary conditions, SIAM J. Numer. Anal., 29(1992), 615-639.
[6] J.C. Strikwerda, Finite difference methods for the Stokes and Navier-Stokes equations, SIAM J. Sci. Stat. Comput., 5(1984), 56-68.
[7] Y. He, Optimal error estimate of the penalty finite element method for the time-dependent NavierStokes equations, Math. Comput., 74(2005), 1201-1216.
[8] Y. He, A fully discrete stablized finite element method for the time-dependent Navier-Stokes problem, IMA J. Numer. Anal., 23(2003), 665-691.
[9] Y. He, J. Li, A stablized finite element method based on local polynomial pressure projection for the stationary Navier-Stokes equations, Appl. Numer. Math., 58(2008), 1503-1514.
[10] Y. He, A two-level finite element Galerkin method for the nonstationary Navier-Stokes equations I:Spatial Discretization, J. Comput. Math., 22(2004), 21-32.
[11] Y. He, H. Miao, C. Ren, A two-level finite element Galerkin method for the nonstationary NavierStokes equations Ⅱ:Time Discretization, J. Comput. Math., 22(2004), 33-54.
[12] J.G. Heywood, R. Rannacher, Finite Element Approximation of the Nonstationary Navier-Stokes Problem. I. Regularity of Solutions and Second-Order Error Estimates for Spatial Discretization, SIAM J. Numer. Anal., 19(1982), 275-311.
[13] J.G. Heywood, R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. Ⅱ. Stability of solutions and error estimates uniform in time, SIAM J. Numer. Anal., 23(1986), 750-777.
[14] J.G. Heywood And R. Rannacher, Finite Element Approximation of the Nonstationary NavierStokes Problem, Part Ⅲ. Smoothing Property and Higher Order Error Estimates for Spatial Discretization, SIAM J. Numer. Anal., 25(1988), 489-512.
[15] J.G. Heywood And R. Rannacher, Finite-element approximation of the nonstationary NavierStokes problem. IV. Error analysis for second-order time discretization, SIAM J. Numer. Anal., 27(1990), 353-384.
[16] H. Han, A finite element approximation of Navier-Stokes equations using nonconforming elements, J. Comput. Math., 2(1984), 77-88.
[17] X. Xu, On the accuracy of nonconforming quadrilateral Q1 element approximation for the NavierStokes problem, SIAMJ. Numer. Anal., 38(2000), 17-39.
[18] Y. He, Two-level method based on finite element and Crank-Nicolson extrapolation for the timedependent Navier-Stokes equations, SIAM J. Numer. Anal., 41:4(2003), 1263-1285.
[19] Y. He, W. Sun, Stability and convergence of the Crank-Nicolson/Adams-Bashforth scheme for the time-dependent Navier-Stokes equations, SIAM J. Numer. Anal., 45:2(2007), 837-869.
[20] Y. He, The Euler implicit/explicit scheme for the 2D time-dependent Navier-Stokes equations with smooth or non-smooth initial data, Math. Comp., 77:264(2008), 2097-2124.
[21] Y. He, K. Liu, A multilevel finite element method in space-time for the Navier-Stokes problem, Numer. Methods Partial Differential Equations, 21:6(2005), 1052-1078.
[22] D. Shi, J. Ren, X. Hao, A new second order nonconforming mixed finite element scheme for the stationary Stokes and Navier-Stokes equations, Appl. Math. Comput., 207(2009), 462-477.
[23] D. Shi, W. Gong, J. Ren, A new stable second nonconforming mixed finite element scheme for the stationary Stokes and Navier-Stokes equations, Math. Comput. Modell., 53(2011), 1956-1969.
[24] D. Shi, J. Ren, Nonconforming mixed finite element approximation to the stationary Navier-Stokes equations on anistropic meshes, Nonl. Anal. TMA, 71(2009), 3842-3852.
[25] Y. Achdou, J.L. Guermond, Convergence analysisi of a finite element/Lagrange-Galerkin method for the incompressible Navier-Stokes equations, SIAM J. Numer. Anal., 37(2000), 799-826.
[26] R. Bermejo, P. Galán del Sastre, A second order in time modufied Lagrange-Galerkin finite element method for the incompressible Navier-Stokes equations, SIAM J. Numer. Anal., 50(2012), 3084-3109.
[27] Z. Si, J. Wang, W. Sun, Unconditional stability and error estimates of modified characteristics FEMs for the Navier-Stokes equations, Numer. Math., 134(2016), 139-161.
[28] P. Chandrashekar, Discontinuous Galerkin method for Naviet-Stokes equations using kinetic vector splitting, J. Comput. Phys., 233(2013), 527-551.
[29] N. Fehn, W.A. Wall, M. Kronbichler, On the stability of projection methods for the incompressible Navier-Stokes equations based on high-order discontinuous Galerki discretizations, J. Comput. Phys., 351(2017), 392-421.
[30] J. Ren, Y. Ma, A superconvergent nonconforming mixed finite element method for the NavierStokes equations, Numer. Methods Partial Differential Equations, 32(2016), 646-660.
[31] C. Xu, D. Shi, X. Liao, Low order nonconforming mixed finite element method for nonstationary incompressible Navier-Stokes equations, Appl. Math. Mech. -Engl. Ed., 37(2016), 1095-1112.
[32] J. Hun, Z. Shi, Constrained quadrilateral nonconforming rotated Q1 element, J. Comput. Math., 23:5(2005), 561-585.
[33] H. Liu, N. Yan, Superconvergence analysis of the nonconforming quadrilateral linear-constant scheme for Stokes equations, Adv. Comput. Math., 29(2008), 375-392.
[34] R.A. Adams, J.J.F. Fournier, Sobolev spaces, Academic press, 2003.
[35] R. Rannacher, S. Turek, Simple nonconforming quadrilateral Stokes element, Numer. Methods Partial Equations, 8(1992), 97-111.
[36] C. Park, D. Sheen, P1 nonconforming quadrilateral finite element methods for second-order elliptic problem, SIAM J. Numer. Anal., 41(2003), 624-640.
[37] M. Li, D. Shi, Y. Dai, Stabilized low order finite elements for Stokes equations with damping, J. Math. Anal. Appl., 435(2016), 646-660.
[38] U. Ghia, K. Ghia, C. Shin, High-Re solutions for incompressible flows using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48(1982), 387-411.
[39] S. Kaya, B. Riviere, A two-grid stabilization method for solving the steady-state Navier-Stokes equations, Numer. Methods Partial Differential Equations, 22(2006), 728-743.
[40] H. Han, M. Yan, A mixed finite element method on a staggred mesh for Navier-Stokes equations, J. Comput. Math., 26(2008), 816-824.
[1] Huaijun Yang, Dongyang Shi. UNCONDITIONALLY OPTIMAL ERROR ESTIMATES OF THE BILINEAR-CONSTANT SCHEME FOR TIME-DEPENDENT NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(1): 127-146.
[2] Xiaocui Li, Xu You. MIXED FINITE ELEMENT METHODS FOR FRACTIONAL NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(1): 130-146.
[3] Baiju Zhang, Yan Yang, Minfu Feng. A C0-WEAK GALERKIN FINITE ELEMENT METHOD FOR THE TWO-DIMENSIONAL NAVIER-STOKES EQUATIONS IN STREAM-FUNCTION FORMULATION [J]. Journal of Computational Mathematics, 2020, 38(2): 310-336.
[4] Houchao Zhang, Dongyang Shi. SUPERCONVERGENCE ANALYSIS FOR TIME-FRACTIONAL DIFFUSION EQUATIONS WITH NONCONFORMING MIXED FINITE ELEMENT METHOD [J]. Journal of Computational Mathematics, 2019, 37(4): 488-505.
[5] Rui Chen, Xiaofeng Yang, Hui Zhang. DECOUPLED, ENERGY STABLE SCHEME FOR HYDRODYNAMIC ALLEN-CAHN PHASE FIELD MOVING CONTACT LINE MODEL [J]. Journal of Computational Mathematics, 2018, 36(5): 661-681.
[6] C. Brennecke, A. Linke, C. Merdon, J. Schöberl. OPTIMAL AND PRESSURE-INDEPENDENT L2 VELOCITY ERROR ESTIMATES FOR A MODIFIED CROUZEIX-RAVIART STOKES ELEMENT WITH BDM RECONSTRUCTIONS [J]. Journal of Computational Mathematics, 2015, 33(2): 191-208.
[7] Xin He, Maya Neytcheva, Cornelis Vuik. ON PRECONDITIONING OF INCOMPRESSIBLE NON-NEWTONIAN FLOW PROBLEMS [J]. Journal of Computational Mathematics, 2015, 33(1): 33-58.
[8] Xin He, Maya Neytcheva. PRECONDITIONING THE INCOMPRESSIBLE NAVIER-STOKESEQUATIONS WITH VARIABLE VISCOSITY [J]. Journal of Computational Mathematics, 2012, 30(5): 461-482.
[9] Minfu Feng, Yanhong Bai, Yinnian He, Yanmei Qin. A NEW STABILIZED SUBGRID EDDY VISCOSITY METHOD BASED ON PRESSURE PROJECTION AND EXTRAPOLATED TRAPEZOIDAL RULE FOR THE TRANSIENT NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2011, 29(4): 415-440.
[10] M. Gunzburger, A. Labovsky. EFFECTS OF APPROXIMATE DECONVOLUTION MODELS ON THE SOLUTION OF THE STOCHASTIC NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2011, 29(2): 131-140.
[11] Houde Han Ming Yan. A Mixed Finite Element Method on a Staggered Mesh for Navier-Stokes Equations [J]. Journal of Computational Mathematics, 2008, 26(6): 816-824.
[12] Junping Wang, Xiaoshen Wang, Xiu Ye . Finite Element Methods for the Navier-Stokes Equations by $H(\rm{div})$ Elements [J]. Journal of Computational Mathematics, 2008, 26(3): 410-436.
[13] Yin Nian HE, Huan Ling MIAO, Chun Feng REN. A TWO-LEVEL FINITE ELEMENT GALERKIN METHOD FOR THE NONSTATIONARY NAVIER-STOKES EQUATIONS II: TIME DISCRETIZATION [J]. Journal of Computational Mathematics, 2004, 22(1): 33-54.
[14] Chun Feng REN , Yi Chen MA. A TWO-GRID METHOD FOR THE STEADY PENALIZED NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2004, 22(1): 101-112.
[15] Yin Nian HE. A TWO-LEVEL FINITE ELEMENT GALERKIN METHOD FOR THE NONSTATIONARY NAVIER-STOKES EQUATIONS I: SPATIAL DISCRETIZATION [J]. Journal of Computational Mathematics, 2004, 22(1): 21-32.
Viewed
Full text


Abstract