Keke Zhang1, Hongwei Liu1, Zexian Liu2
Keke Zhang, Hongwei Liu, Zexian Liu. A NEW ADAPTIVE SUBSPACE MINIMIZATION THREE-TERM CONJUGATE GRADIENT ALGORITHM FOR UNCONSTRAINED OPTIMIZATION[J]. Journal of Computational Mathematics, 2021, 39(2): 159-177.
[1] Y.H. Dai, J.Y. Han, G.H. Liu, D.F. Sun, H.X. Yin and Y.X. Yuan, Convergence properties of nonlinear conjugate gradient methods. SIAM J. Optim., 10:2(1999), 345-358. [2] W.W. Hager and H. Zhang, A survey of nonlinear conjugate gradient methods. Pac. J. Optim., 2:1(2006), 35-38. [3] N. Andrei, Numerical comparison of conjugate gradient algorithms for unconstrained optimization. Stud. Inform. Control., 16:4(2007), 333-352. [4] R. Fletcher and C.M. Reeves, Function minimization by conjugate gradients. Comput. J., 7:2(1964), 149-154. [5] E. Polak and G. Ribière, Note sur la convergence de méthodes de directions conjuguées. Rev. Francaise Inform. Rech. Opérationnelle, 3:16(1969), 35-34. [6] B.T. Polyak, The conjugate gradient method in extremal problems. USSR Comput. Math. Math. Phys., 9:4(1969), 94-112. [7] M.R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems. J. Res. Nat. Bur. Stand., 49:6(1952), 409-436. [8] Y.H. Dai and Y.X. Yuan, A nonlinear conjugate gradient method with a strong global convergence property. SIAM J. Optim., 10:1(1999), 177-182. [9] Y.H. Dai, Nonlinear conjugate gradient methods. John Wiley, 2011, 1-36. https://doi.org/10.1002/9780470400531.eorms0183. [10] P. Radosaw, Conjugate gradient algorithm in nonconvex optimization. Springer-Verlag, Berlin Heidelberg, 2009. [11] Y.H. Dai and C.X. Kou, A nonlinear conjugate gradient algorithm with an optimal property and an improved Wolfe line search. SIAM J. Optim., 23:1(2013), 296-320. [12] W.W. Hager and H. Zhang, A new conjugate gradient method with guarantee descent and an efficient line search. SIAM J. Optim., 16:1(2005), 170-192. [13] H. Zhang and W.W. Hager, A nonmomotone line search technique and its application to unconstrained optimization. SIAM J. Optim., 14:4(2004), 1043-1056. [14] E.M.L. Beale, A derivative of conjugate-gradients In:Lootsma, F.A (ed.), Numerical Methods for Nonlinear Optimization, Academic Press, London, 1972, 39-43. [15] L. Nazareth, A conjugate direction algorithm without line search, J. Optimiz. Theory App., 23:3(1997), 373-387. [16] L. Zhang, W. Zhou and D. Li, A descent modified Polak-Ribière-Polyak conjugate gradient method and its global convergence. IMA J. Numer. Anal., 26:4(2006), 629-640. [17] L. Zhang, W. Zhou and D.H. Li, Some descent three-term conjugate gradient methods and their global convergence. Optim. Methods Softw., 22:4(2007), 697-711. [18] N. Andrei, A simple three-term conjugate gradient algorithm for unconstrained optimization. J. Comput. Appl. Math., 241(2013), 19-29. [19] Y. Narushima, H. Yabe and J.A. Ford, A three-term conjugate gradient method with sufficient descent property for unconstrained optimization, SIAM J. Optim., 21:1(2011), 212-230 [20] X. L. Dong, H. W. Liu and Y. B. He, New version of the three-term conjugate gradient method based on spectral scaling conjugacy condition that generates descent search direction. Appl. Math. Comput., 269:15(2015), 606-617. [21] N. Andrei, A modified Polak-Ribière-Polyak conjugate gradient algorithm for unconstrained optimization, Optimization, 60:12(2011), 1457-1471. [22] Y.X. Yuan and J. Stoer, A subspace study on conjugate gradient algorithms. Zamm J. Appl. Mech. Z. Angew. Math. Mech., 75:1(1995), 69-77. [23] N. Andrei, An accelerated subspace minimization three-term conjugate gradient algorithm for unconstrained optimization, Numer. Algor., 65:4(2014), 859-874. [24] Y.H. Dai and C.X. Kou, New conjugacy conditions and related nonlinear conjugate gradient methods. Appl. Math. Opt., 43:1(2001), 87-101. [25] Y.T. Yang, Y.T. Chen and Y.L. Lu, A subspace conjugate gradient algorithm for large-scale unconstrained optimization. Numer. Algor., 76:3(2017), 813-828. [26] Y.H., Dai and C.X. Kou, A Barzilai-Borwein conjugate gradient method. Sci. China Math., 59:8(2016), 1511-1524. [27] H.W. Liu and Z.X. Liu:An efficient Barzilai-Borwein conjugate gradient method for unconstrained optimization. J Optim. Theory Appl., 180:3(2018), 879-906. [28] M. Li, H.W. Liu and Z.X. Liu, A new subspace minimization conjugate gradient method with nonmonotone line search for unconstrained optimization. Numer. Algor., 79:1(2018), 195-219. [29] W.W. Hager and H. Zhang, The limited memory conjugate gradient method. SIAM J. Optim., 23:4(2013), 2150-2168 [30] T. Wang, Z.X. Liu and H.W. Liu, A new subspace minimization conjugate gradient method based on tensor model for unconstrained optimization. Int. Comput, Math., 96:10(2019), 1924-1942. [31] Y.F. Li, Z.X. Liu and H.W. Liu, A subspace minimization conjugate gradient method based on conic model for unconstrained optimization. Comut. Appl. Math., 38:16(2019), https://doi.org/10.1007/s40314-019-0779-7 [32] Y.X. Yuan, A review on subspace methods for nonlinear optimization. in Proceedings of the International Congress of Mathematics, (2014), 807-827. [33] J. Barzilai and J.M. Borwein, Two-point step size gradient methods. IMA J. Numer. Anal., 8:1(1988), 141-148. [34] N. Andrei, An unconstrained optimization test functions collection. Environ. Sci. Technol., 10:1(2008), 6552-6558. [35] E.D. Dolan and J.J. Moré, Benchmarking optimization software with performance profiles. Math. Prog., 91:2(2002), 201-213. [36] W.W. Hager and H., Zhang, Algorithm 851:CG DESCENT, a conjugate gradient method with guaranteed descent. ACM Trans. Math. Softw., 32:1(2006), 113-137. |
[1] | Xiaoyu Wang, Ya-xiang Yuan. STOCHASTIC TRUST-REGION METHODS WITH TRUST-REGION RADIUS DEPENDING ON PROBABILISTIC MODELS [J]. Journal of Computational Mathematics, 2022, 40(2): 294-334. |
[2] | Yuting Chen, Mingyuan Cao, Yueting Yang, Qingdao Huang. AN ADAPTIVE TRUST-REGION METHOD FOR GENERALIZED EIGENVALUES OF SYMMETRIC TENSORS [J]. Journal of Computational Mathematics, 2021, 39(3): 358-374. |
[3] | Wenjuan Xue, Weiai Liu. A MULTIDIMENSIONAL FILTER SQP ALGORITHM FOR NONLINEAR PROGRAMMING [J]. Journal of Computational Mathematics, 2020, 38(5): 683-704. |
[4] | Bothina El-Sobky, Abdallah Abotahoun. A TRUST-REGION ALGORITHM FOR SOLVING MINI-MAX PROBLEM [J]. Journal of Computational Mathematics, 2018, 36(6): 776-791. |
[5] | Caixia Kou, Zhongwen Chen, Yuhong Dai, Haifei Han. AN AUGMENTED LAGRANGIAN TRUST REGION METHOD WITH A BI-OBJECT STRATEGY [J]. Journal of Computational Mathematics, 2018, 36(3): 331-350. |
[6] | Fan Jiang, Deren Han, Xiaofei Zhang. A TRUST-REGION-BASED ALTERNATING LEAST-SQUARES ALGORITHM FOR TENSOR DECOMPOSITIONS [J]. Journal of Computational Mathematics, 2018, 36(3): 351-373. |
[7] | Yangyang Xu. FAST ALGORITHMS FOR HIGHER-ORDER SINGULAR VALUE DECOMPOSITION FROM INCOMPLETE DATA [J]. Journal of Computational Mathematics, 2017, 35(4): 397-422. |
[8] | Jinkui Liu, Shengjie Li. SPECTRAL DY-TYPE PROJECTION METHOD FOR NONLINEAR MONOTONE SYSTEM OF EQUATIONS [J]. Journal of Computational Mathematics, 2015, 33(4): 341-355. |
[9] | Houde Han, Chunxiong Zheng. POISSON PRECONDITIONING FOR SELF-ADJOINT ELLIPTIC PROBLEMS [J]. Journal of Computational Mathematics, 2014, 32(5): 560-578. |
[10] | Jinghui Liu, Changfeng Ma. A NEW NONMONOTONE TRUST REGION ALGORITHM FOR SOLVING UNCONSTRAINED OPTIMIZATION PROBLEMS [J]. Journal of Computational Mathematics, 2014, 32(4): 476-490. |
[11] | Huangxin Chen, Xuejun Xu, Weiying Zheng. LOCAL MULTILEVEL METHODS FOR SECOND-ORDER ELLIPTIC PROBLEMS WITH HIGHLY DISCONTINUOUS COEFFICIENTS [J]. Journal of Computational Mathematics, 2012, 30(3): 223-248. |
[12] | Fusheng Wang, Chuanlong Wang, Li Wang. A NEW TRUST-REGION ALGORITHM FOR FINITE MINIMAX PROBLEM [J]. Journal of Computational Mathematics, 2012, 30(3): 262-278. |
[13] | El-Sayed M.E. Mostafa. A CONJUGATE GRADIENT METHOD FOR DISCRETE-TIME OUTPUT FEEDBACK CONTROL DESIGN [J]. Journal of Computational Mathematics, 2012, 30(3): 279-297. |
[14] | Xuebin Wang, Changfeng Ma, Meiyan Li. A SMOOTHING TRUST REGION METHOD FOR NCPS BASED ON THE SMOOTHING GENERALIZED FISCHER-BURMEISTER FUNCTION [J]. Journal of Computational Mathematics, 2011, 29(3): 261-286. |
[15] | Junfeng Yin, Zhongzhi Bai . The Restrictively Preconditioned Conjugate Gradient Methods on NormalResidual for Block Two-by-Two Linear Systems [J]. Journal of Computational Mathematics, 2008, 26(2): 240-249. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||