Previous Articles Next Articles
Michael Holst, Yuwen Li, Adam Mihalik, Ryan Szypowski
[1] M. Ainsworth and J. Oden, A Posteriori Error Estimation in Finite Element Analysis, John Wiley& Sons, Inc., 2000. [2] A. Alonso. Error estimators for a mixed method. Numer. Math., 74:4(1996), 385-395. [3] D.N. Arnold, R.S. Falk, and R. Winther, Finite element exterior calculus, homological techniques, and applications, Acta Numer., 15(2006), 1-155. [4] D.N. Arnold, R.S. Falk, and R. Winther, Finite element exterior calculus:from Hodge theory to numerical stability, Bull. Amer. Math. Soc. (N.S.), 47:2(2010), 281-354. [28] P. Morin, R.H. Nochetto, and K.G. Siebert, Convergence of adaptive finite element methods, SIAM Rev., 44:4(2002), 631-658(electronic). Revised reprint of "Data oscillation and convergence of adaptive FEM", SIAM J. Numer. Anal. 38:2(2000), 466-488. [29] P. Morin, K.G. Siebert, and A. Veeser, A basic convergence result for conforming adaptive finite elements, Math. Models Methods Appl. Sci., 18:5(2008), 707-737. [30] J.C. Nédélec, Mixed finite elements in ${\Bbb R}$3, Numer. Math., 35:3(1980), 315-341. [31] J.C. Nédélec, A new family of mixed finite elements in ${\Bbb R}$3, Numer. Math., 50:1(1986), 57-81. [32] R.H. Nochetto and A. Veeser, Primer of adaptive finite element methods, Springer-Verlag, Heidelberg, 2012, Lecture Notes in Mathematics. [33] P.A. Raviart and J. Thomas, A mixed finite element method for 2nd order elliptic problems, Springer, Berlin, 1977, Lecture notes in Mathematics 606. [34] S. Repin, A posteriori estimates for partial differential equations, volume 4 of Radon Series on Computational and Applied Mathematics, Walter de Gruyter GmbH & Co. KG, Berlin, 2008. [35] J. Schöberl, A posteriori error estimates for Maxwell equations, Math. Comp., 77:262(2008), 633-649. [36] R. Stevenson, Optimality of a standard adaptive finite element method, Found. Comput. Math., 7:2(2007), 245-269. [37] R. Stevenson, The completion of locally refined simplicial partitions created by bisection, Math. Comp., 77:261(2008), 227-241(electronic). [38] R. Verfürth, A review of a posteriori error estimation and adaptive mesh refinement tecniques, B. G. Teubner, 1996. [5] I. Babuška and W.C. Rheinboldt, A posteriori error estimates for the finite element method, International Journal for Numerical Methods in Engineering, 12(1978), 1597-1615. [6] I. Babuška and M. Vogelius, Feedback and adaptive finite element solution of one-dimensional boundary value problems, Numer. Math., 44(1984), 75-102. [7] R. Becker and S. Mao, An optimally convergent adaptive mixed finite element method, Numer. Math., 111(2008), 35-54. [8] P. Binev, W. Dahmen, and R. DeVore, Adaptive finite element methods with convergence rates, Numer. Math., 97:2(2004), 219-268. [9] A. Bossavit, Whitney forms:a class of finite elements for three-dimensional computations in electromagnetism, Science, Measurement and Technology, IEE Proceedings A, 135:8(1988), 493500. [10] F. Brezzi, J. Douglas, and L.D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math., 47:2(1985), 217-235. [11] J. Brüning and M. Lesch, Hilbert complexes, J. Funct. Anal., 108:1(1992), 88-132. [12] J.M. Cascon, C. Kreuzer, R.H. Nochetto, and K.G. Siebert, Quasi-optimal convergence rate for an adaptive finite element method, SIAM J. Numer. Anal., 46:5(2008), 2524-2550. [13] L. Chen, M. Holst, and J. Xu, Convergence and optimality of adaptive mixed finite element methods, Math. Comp., 78:265(2009), 35-53. [14] L. Chen and Y. Wu, Convergence of adaptive mixed finite element methods for the Hodge Laplacian equation:without harmonic forms, SIAM J. Numer. Anal., 15(2017), 2905-2929. [15] S.H. Christiansen and R. Winther, Smoothed projections in finite element exterior calculus, Math. Comp., 77:262(2008), 813-829. [16] A. Demlow, Convergence and quasi-optimality of adaptive finite element methods for harmonic forms, Numer. Math., 136(2017), 941-971. [17] A. Demlow and A.N. Hirani, A posteriori error estimates for finite element exterior calculus:The de Rham complex, Found. Comput. Math., 14(2014), 1337-1371. [18] W. Dörfler, A convergent adaptive algorithm for Poisson's equation, SIAM J. Numer. Anal., 33(1996), 1106-1124. [19] P.W. Gross and P.R. Kotiuga, Electromagnetic theory and computation:a topological approach, volume 48 of Mathematical Sciences Research Institute Publications, Cambridge University Press, Cambridge, 2004. [20] M. Holst, A. Mihalik, and R. Szypowski, Convergence and optimality of adaptive methods in the finite element exterior calculus framework, Preprint, Available as http://arxiv.org/abs/1306.1886 arXiv:1306.1886v2[math.NA]. [21] M. Holst and A. Stern, Geometric variational crimes:Hilbert complexes, finite element exterior calculus, and problems on hypersurfaces, Found. Comput. Math., 12:3(2012), 263-293. [22] M. Holst and A. Stern, Semilinear mixed problems on Hilbert complexes and their numerical approximation, Found. Comput. Math., 12:3(2012), 363-387. [23] M. Holst, G. Tsogtgerel, and Y. Zhu, Local convergence of adaptive methods for nonlinear partial differential equations, Preprint, Available as http://arxiv.org/abs/1001.1382 arXiv:1001.1382[math.NA]. [24] J. Hu and G. Yu, A unified analysis of quasi-optimal convergence for adaptive mixed finite element methods, SIAM J. Numer. Anal., 56:1(2018), 296-316. [25] J. Huang and Y. Xu, Convergence and complexity of arbitrary order adaptive mixed element methods for the Poisson equation, Sci China Math, 55:5(2012), 1083-1098. [26] T. Kato, Perturbation theory for linear operators, Springer-Verlag, Berlin, second edition, 1976, Grundlehren der Mathematischen Wissenschaften, Band 132. [27] Y. Li, Some convergence and optimality results of adaptive mixed methods in finite element exterior calculus, to appear in SIAM J. Numer. Anal., Available as http://arxiv.org/abs/1811.11143 arXiv:1811.11143[math.NA]. [28] P. Morin, R.H. Nochetto, and K.G. Siebert, Convergence of adaptive finite element methods, SIAM Rev., 44:4(2002), 631-658(electronic). Revised reprint of "Data oscillation and convergence of adaptive FEM", SIAM J. Numer. Anal. 38:2(2000), 466-488. [29] P. Morin, K.G. Siebert, and A. Veeser, A basic convergence result for conforming adaptive finite elements, Math. Models Methods Appl. Sci., 18:5(2008), 707-737. [30] J.C. Nédélec, Mixed finite elements in ${\Bbb R}$3, Numer. Math., 35:3(1980), 315-341. [31] J.C. Nédélec, A new family of mixed finite elements in ${\Bbb R}$3, Numer. Math., 50:1(1986), 57-81. [32] R.H. Nochetto and A. Veeser, Primer of adaptive finite element methods, Springer-Verlag, Heidelberg, 2012, Lecture Notes in Mathematics. [33] P.A. Raviart and J. Thomas, A mixed finite element method for 2nd order elliptic problems, Springer, Berlin, 1977, Lecture notes in Mathematics 606. [34] S. Repin, A posteriori estimates for partial differential equations, volume 4 of Radon Series on Computational and Applied Mathematics, Walter de Gruyter GmbH & Co. KG, Berlin, 2008. [35] J. Schöberl, A posteriori error estimates for Maxwell equations, Math. Comp., 77:262(2008), 633-649. [36] R. Stevenson, Optimality of a standard adaptive finite element method, Found. Comput. Math., 7:2(2007), 245-269. [37] R. Stevenson, The completion of locally refined simplicial partitions created by bisection, Math. Comp., 77:261(2008), 227-241(electronic). [38] R. Verfürth, A review of a posteriori error estimation and adaptive mesh refinement tecniques, B. G. Teubner, 1996. |
[1] | Ram Manohar, Rajen Kumar Sinha. ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR FULLY DISCRETE SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS [J]. Journal of Computational Mathematics, 2022, 40(2): 147-176. |
[2] | Xiaoyu Wang, Ya-xiang Yuan. STOCHASTIC TRUST-REGION METHODS WITH TRUST-REGION RADIUS DEPENDING ON PROBABILISTIC MODELS [J]. Journal of Computational Mathematics, 2022, 40(2): 294-334. |
[3] | Mohammed Harunor Rashid. METRICALLY REGULAR MAPPING AND ITS UTILIZATION TO CONVERGENCE ANALYSIS OF A RESTRICTED INEXACT NEWTON-TYPE METHOD [J]. Journal of Computational Mathematics, 2022, 40(1): 44-69. |
[4] | Yang Chen, Chunlin Wu. DATA-DRIVEN TIGHT FRAME CONSTRUCTION FOR IMPULSIVE NOISE REMOVAL [J]. Journal of Computational Mathematics, 2022, 40(1): 89-107. |
[5] | Qianqian Chu, Guanghui Jin, Jihong Shen, Yuanfeng Jin. NUMERICAL ANALYSIS OF CRANK-NICOLSON SCHEME FOR THE ALLEN-CAHN EQUATION [J]. Journal of Computational Mathematics, 2021, 39(5): 655-665. |
[6] | Lu Zhang, Qifeng Zhang, Hai-wei Sun. A FAST COMPACT DIFFERENCE METHOD FOR TWO-DIMENSIONAL NONLINEAR SPACE-FRACTIONAL COMPLEX GINZBURG-LANDAU EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(5): 708-732. |
[7] | Xia Cui, Guangwei Yuan, Fei Zhao. ANALYSIS ON A NUMERICAL SCHEME WITH SECOND-ORDER TIME ACCURACY FOR NONLINEAR DIFFUSION EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(5): 777-800. |
[8] | Yong Liu, Chi-Wang Shu, Mengping Zhang. SUB-OPTIMAL CONVERGENCE OF DISCONTINUOUS GALERKIN METHODS WITH CENTRAL FLUXES FOR LINEAR HYPERBOLIC EQUATIONS WITH EVEN DEGREE POLYNOMIAL APPROXIMATIONS [J]. Journal of Computational Mathematics, 2021, 39(4): 518-537. |
[9] | Xiaobing Feng, Yukun Li, Yi Zhang. STRONG CONVERGENCE OF A FULLY DISCRETE FINITE ELEMENT METHOD FOR A CLASS OF SEMILINEAR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS WITH MULTIPLICATIVE NOISE [J]. Journal of Computational Mathematics, 2021, 39(4): 574-598. |
[10] | Bin Huang, Aiguo Xiao, Gengen Zhang. IMPLICIT-EXPLICIT RUNGE-KUTTA-ROSENBROCK METHODS WITH ERROR ANALYSIS FOR NONLINEAR STIFF DIFFERENTIAL EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(4): 599-620. |
[11] | Yaozong Tang, Qingzhi Yang, Gang Luo. CONVERGENCE ANALYSIS ON SS-HOPM FOR BEC-LIKE NONLINEAR EIGENVALUE PROBLEMS [J]. Journal of Computational Mathematics, 2021, 39(4): 621-632. |
[12] | Yuting Chen, Mingyuan Cao, Yueting Yang, Qingdao Huang. AN ADAPTIVE TRUST-REGION METHOD FOR GENERALIZED EIGENVALUES OF SYMMETRIC TENSORS [J]. Journal of Computational Mathematics, 2021, 39(3): 358-374. |
[13] | Keke Zhang, Hongwei Liu, Zexian Liu. A NEW ADAPTIVE SUBSPACE MINIMIZATION THREE-TERM CONJUGATE GRADIENT ALGORITHM FOR UNCONSTRAINED OPTIMIZATION [J]. Journal of Computational Mathematics, 2021, 39(2): 159-177. |
[14] | Huaijun Yang, Dongyang Shi, Qian Liu. SUPERCONVERGENCE ANALYSIS OF LOW ORDER NONCONFORMING MIXED FINITE ELEMENT METHODS FOR TIME-DEPENDENT NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(1): 63-80. |
[15] | Yongtao Zhou, Chengjian Zhang, Huiru Wang. BOUNDARY VALUE METHODS FOR CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(1): 108-129. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||