Previous Articles Next Articles
Houchao Zhang1, Dongyang Shi2
Houchao Zhang, Dongyang Shi. SUPERCONVERGENCE ANALYSIS FOR TIME-FRACTIONAL DIFFUSION EQUATIONS WITH NONCONFORMING MIXED FINITE ELEMENT METHOD[J]. Journal of Computational Mathematics, 2019, 37(4): 488-505.
[1] R. Gorenflo, F. Mainardi, D. Moretti, P. Paradisi, Time fractional diffusion:a discrete random walk approach, Nonlinear Dynam., 29(2002), 129-143.[2] R. Gorenflo, Y. Luchko, F. Mainardi, Wright function as scale-invariant solutions of the diffusionwave equation, J. Comp. Appl. Math., 118(2000), 175-191.[3] W. R. Schneider, W. Wyss, Fractional diffusion and wave equations, J. Math. Phys., 30(1989), 134-144.[4] W. Wyss, The fractional diffusion equation, J. Math. Phys., 27(1986), 2782-2785.[5] T. S. Basu, H. Wang, A fast second-order finite difference method for space-fractional diffusion equations, Int. J. Numer. Anal. Modeling, 9(2012), 658-666.[6] M. Cui, Compact finite difference method for the fractional diffusion equation, J. Comput. Phys., 228(2009), 7792-7804.[7] R. Du, W. Cao, Z. Sun, A compact difference scheme for the fractional diffusion-wave equation, Appl. Math. Model., 34(2010), 2998-3007.[8] G. Gao, Z. Sun, A compact finite difference scheme for the fractional sub-diffusion equations, J. Comput. Phys., 230(2011), 586-595.[9] T. A. M. Langlands, B. I. Henry, The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys., 205(2005), 719-736.[10] J. Ren, Z. Sun, Numerical algorithm with high spatial accuracy for the fractional diffusion-wave equation with neumann boundary conditions, J. Sci. Comput., 56(2013), 381-408.[11] Z. Sun, X. Wu, A fully discrete scheme for a diffusion wave system, Appl. Numer. Math., 56(2006), 193-209.[12] X. Zhao, Z. Sun, Compact Crank-Nicolson schemes for a class of fractional cattaneo equation in inhomogeneous medium, J. Sci. Comput., 62(2015), 747-771.[13] P. Wang, C. Huang, An energy conservative difference scheme for the nonlinear fractional Schröodinger equations, J. Comput. Phys., 293(2015), 238-251.[14] Y. Jiang, A new analysis of stability and convergence for finite difference schemes solving the time fractional Fokker-Planck equation, Appl. Math. Model., 39(2015), 1163-1171.[15] F. Zeng, C. Li, F. Liu, I. Turner, The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput., 35(2013), A2976-A3000.[16] H. Wang, T. S. Basu, A fast finite difference method for two-dimensional space-fractional diffusion equations, SIAM J. Sci. Comput., 34(2012), A2444-A2458.[17] V. J. Ervin, N. Heuer, J. P. Roop, Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation, SIAM J. Numer. Anal., 45(2007), 572-591.[18] Y. Jiang, J. Ma, High-order finite element methods for time-fractional partial differential equations, J. Comput. Appl. Math., 235(2011), 3285-3290.[19] B. Jin, R.Lazarov, Y. Liu, Z. Zhou, The Galerkin finite element method for a multi-term timefractional diffusion equation. J. Comput. Phys., 281(2015), 825-843.[20] B. Jin, R. Lazarov, Z. Zhou, Error estimates for a semidiscrete finite element method for fractional order parabolic equations, SIAM J. Numer. Anal. 51(2013), 445-466.[21] W. Bu, Y. Tang, Y. Wu, J. Yang, Finite difference/finite element method for two-dimensional space and time fractional Bloch-Torrey equations, J. Comput. Phys., 293(2015), 264-279.[22] W. Deng, Finite element method for the space and time fractional Fokker-Planck equation, SIAM J. Numer. Anal., 47(2008), 204-226.[23] H. Wang, D. Yang, S. F. Zhu, Accuracy of finite element methods for boundary-value problems of steady-state fractional diffusion equations, J. Sci. Comput., 70(2017), 429-499.[24] D. Li, H. Liao, W. Sun et al, Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems, Numer. Anal., arXiv:1612.00562.[25] B. Jin, R. Lazarov, Z. Zhou, Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data, SIAM J. Sci. Comput., 38(2014), A146-A170.[26] X. J. Li, C. J. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal., 47(2009), 2108-2131.[27] Y. Lin, C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225(2007), 1533-1552.[28] C. Lv, C. Xu, Improved error estimates of a finite difference/speciral method for time-fractional diffusion equation, Int. J. Numer. Anal. Model., 12(2015), 384-400.[29] C. Lv, C. Xu, Error analysis of a high order method for time-fractional diffusion equations, SIAM J. Sci. Comput., 38(2016), A2699-A2724.[30] Q. Xu, Z. Zheng, Discontinuous Galerkin method for time fractional diffusion equation, J. Inf. Comput. Sci. 10(2013), 3253-3264.[31] K. Mustapha, Time-stepping discontinuous Galerkin methods for fractional diffusion problems, Numer. Math., 130(2015), 497-516.[32] L. Wei, Y. He, Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems, Appl. Math. Model., 38(2014), 1511-1522.[33] Y. Liu, Y. Du, H. Li, J. Li, S. He, A two-grid mixed finite element method for a nonlinear fourthorder reaction-diffusion problem with time-fractional derivative, Comput. Math. Appl., 70(2015), 2474-2492.[34] Y. Liu, Z. Fang, H. Li, S. He, A mixed finite element method for a time-fractional fourth-order partial differential equation, Appl. Math. Comput., 243(2014), 703-717.[35] X. Zhao, X. Z. Hu, W. Cai, G. E. Karniadakis, Adaptive finite element method for fractional differential equations using Hierarchical Matricesn, Comput. Methods Appl. Mech. Engrg., 325(2017), 56-76.[36] S. Jiang, J. Zhang, Q. Zhang, Z. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys., 21(2017), 650-678.[37] R. Ke, M. Ng, H. Sun, A fast direct method for block triangular Toeplitz-like with tridiagonal block systems for time-fractional partial differential equations, J. Comput. Phys., 303(2015), 203-211.[38] X. Lu, H. Pang, H. Sun, Fast approximate inversion of a block triangular Toeplitz matrix with applications to fractional sub-diffusion equations, Numer. Linear Algebra Appl., 22(2015), 866-882.[39] K. Mustapha, W. Mclean, Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations, SIAM J. Numer. Anal., 51(2013), 491-515.[40] X. Zhao, Z. Zhang, Superconvergence point of fractional spectral interpolation, SIAM J. Sci. Comput., 38(2016), A598-A613.[41] L. Fatone, D. Funaro, Optimal collocation nodes for fractional derivative operators, SIAM J. Sci. Comput., 37(2015), A1504-A1524.[42] Y. Zhao, Y. Zhang, D. Shi, F. Liu, I. Turnerb, Superconvergence analysis of nonconforming finite element method for two-dimensional time fractional diffusion equations, Appl. Math. Lett., 59(2016), 38-47.[43] Z. Hao, G. Lin, Z. Sun, A high-order compact finite difference scheme for the fractional subdiffusion equation, J. Sci. Comput., 64(2015), 959-985.[44] Y. Jiang, J. Ma, Moving finite element methods for time fractional partial differential equations, Sci. China Math., 56(2013), 1287-1300.[45] Y. Liu, Y. Du, H. Li, J. Wang, An H 1-Galerkin mixed finite element method for time fractional reaction-diffusion equation, J. Appl. Math. Comput. 47(2015), 103-117.[46] Y. Zhao, P. Chen, W. Bu, X. Liu, Y. Tang, Two mixed finite element methods for time-fractional diffusion equations, J. Sci. Comput., 70(2017), 407-428.[47] Q. Lin, Tobiska L, A. Zhou, Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation, IAM J. Numer. Anal., 25(2005), 160-181.[48] D. Shi, S. Mao, S. Chen. An anisotropic nonconforming finite element with some superconvergence results, J. Comput. Math., 23(2005), 261-274.[49] D. Shi, Y. Zhang, High accuracy analysis of a new nonconforming low order finite element scheme for Sobolev equation, Appl. Math. Comput., 218(2011), 3176-3186.[50] Q. Lin, J. Lin, Finite Element Methods:Accuracy and Improvement, Science Press, 2006.[51] Q. Lin, N. Yan, High Efficient Finite Elements (in chinese), Hebei University Press, 1996.[52] Rannacher R, Turek S, Simple nonconforming quadrilateral Stokes element, Numer. Methods Partial Differential Equations, 8(1992), 97-111.[53] J. Hu, Z. Shi, Constrained quadrilateral nonconforming rotated Q1 element, J. Comput. Math., 23(2005), 561-586.[54] M. Stynes, E. O'Riordan, J. L. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55(2017), 1057-1079.[55] H. Liao, D. Li, J. Zhang, Sharp error estimate of the nonuniform L1 formula for linear reactionsubdiffusion equations, SIAM J. Numer. Anal., (2018), Accepted. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||