Previous Articles Next Articles
Jin Li1, Hongxing Rui2
Jin Li, Hongxing Rui. EXTRAPOLATION METHODS FOR COMPUTING HADAMARD FINITE-PART INTEGRAL ON FINITE INTERVALS[J]. Journal of Computational Mathematics, 2019, 37(2): 261-277.
[1] L.C. Andrews, Special Functions of Mathematics for Engineers, second ed., McGraw-Hill, Inc, 1992.[2] U.J. Choi, S.W. Kim, B.I. Yun, Improvement of the asymptotic behaviour of the Euler-Maclaurin formula for Cauchy principal value and Hadamard finite-part integrals. Int.J. Numer. Meth. Engng., 61(2004), 496-513.[3] K. Diethdm, Asymptotically sharp error bounds for a quadrature rule for Cauchy principal value integrals based on piecewise linear interpolation, Approx. Theory and its Appl., 11:4(1995), 78-89.[4] Q.K. Du, Evaluations of certain hypersingular integrals on interval. Int.J. Numer. Meth. Engng., 51(2001), 1195-1210.[5] D. Elliott, E. Venturino, Sigmoidal transformations and the Euler-Maclaurin expansion for evaluating certain Hadamard finite-part integrals. Numer. Math. 77(1997), 453-465.[6] T. Hasegawa, Uniform approximations to finite Hilbert transform and its derivative. J. Comput. Appl. Math., 163(2004), 127-138.[7] C.Y. Hui, D. Shia, Evaluations of hypersingular integrals using Gaussian quadrature. Int. J. Numer. Methods Eng., 44(1999), 205-214.[8] N.I. Ioakimidis, On the uniform convergence of Gaussian quadrature rules for Cauchy principal value integrals and their derivatives. Math. Comp., 44(1985), 191-198.[9] J. Li, J.M. Wu, D.H. Yu, Generalized extrapolation for computation of hypersingular integrals in boundary element methods. CMES:Computer Modeling in Engineering & Sciences, 42(2009), 151-175.[10] J. Li, D.H. Yu, The superconvergence of certain two-dimensional Cauchy principal value integrals. CMES Comput. Model. Eng. Sci., 71(2011), 331-346.[11] J. Li, D.H. Yu, The Superconvergence of certain Two-dimensional Hilbert singular integrals. CMES Comput. Model. Eng. Sci., 82(2011), 233-252.[12] J. Li, D.H. Yu, The erroe estimate of Newton-Cotes methods to compute hypersingular integral. Math. Numer. Sin., 33(2011), 77-86.[13] J. Li, X.P. Zhang, D.H. Yu, Superconvergence and ultraconvergence of Newton-Cotes rules for supersingular integrals, J. Comput. Appl. Math., 233(2010), 2841-2854.[14] J. Li, X.P. Zhang, D.H. Yu, Extrapolation methods to compute hypersingular integral in boundary element methods, Science China Mathematics, 56:8(2013), 1647-1660.[15] J. Li, D.H. Yu, Error expansion of classical trapezoidal rule for computing Cauchy principal value integral, CMES Comput. Model. Eng. Sci., 93(2013), 47-67.[16] J. Li, H.X, Rui, D.H. Yu, Trapezoidal rule for computing supersingular integral on a circle. J. Sci. Comput., 66:2(2016), 740-760.[17] J.N. Lyness, The Euler-Maclaurin expansion for the Cauchy principal value integral. Numer. Math., 46(1985), 611-622.[18] J.N. Lyness, Finite-part integrals and the Euler-Maclaurin expansion, In:Zahar, R.V.M. (ed.) Approximation and Computation. Internat. Ser. Numer. Math., 119(1994), 397-407. Birkhauser Verlag, Basel, Boston, Berlin.[19] J. Huang, J.Z. Wang, R. Zhu, Asymptotic error expansions for hypersingular integrals, Adv. Comput. Math., 38:2(2013), 257-279.[20] P. Kim, U.C. Jin, Two trigonometric quadrature formulae for evaluating hypersingular integrals. Int.J. Numer. Meth. Engng., 56(2003), 469-486.[21] D.H. Yu, Natural Boundary Integrals Method and its Applications, Kluwer Academic Publishers, 2002.[22] P. Linz, On the approximate computation of certain strongly singular integrals. Computing, 35(1985), 345-353.[23] D.H. Yu, The approximate computation of hypersingular integrals on interval, Numer. Math. J. Chinese Univ. (English Ser.), 1(1992), 114-127.[24] Y.T. Zhou, J. Li, D.H. Yu, K.Y. Lee, Numerical solution of hypersingular equation using recursive wavelet on invariant set. Appl. Math. Comput., 217(2010), 861-868.[25] J.M. Wu, Y.X. Wang, W. Li, W.W. Sun, Toeplitz-type approximations to the Hadamard integral operator and their applications to electromagnetic cavity problems, Appl. Numer. Math., 58:2(2008), 101-121.[26] J.M. Wu, W.W. Sun, The superconvergence of the composite trapezoidal rule for Hadamard finite part integrals. Numer. Math., 102(2005), 343-363.[27] C.X. Yang, A unified approach with spectral convergence for the evaluation of hypersingular and supersingular integrals with a periodic kernel. J. Comput. Appl. Math., 239(2013), 322-332.[28] X.P. Zhang, J.M. Wu, D.H. Yu, The superconvergence of composite trapezoidal rule for Hadamard finite-part integral on a circle and its application. Int. J. Comput. Math., 87:4(2010), 855-876.[29] C.B, Liem, T. Lu, T.M. Shih, The Splitting Extrapolation Method, World Scientific, Singapore, 1995.[30] G. Monegato, Numerical evaluation of hypersingular integrals. J. Comput. Appl. Math., 50(1994), 9-31.[31] J.M. Wu, Y. Lu:A superconvergence result for the second order Newton-Cotes formula for certain finite part integrals. IMA Journal of Numerical Analysis., 25(2005), 253-263.[32] J.M. Wu, D.H. Yu, The approximate computation of hypersingular integrals on interval, Chinese J. Numer. Math. Appl., 21(1999), 25-33.[33] H.J. Sun, Study on series expansion by some orthogonal polynomials. Journal of Sichuan University of Science Engineering, 22:5(2009), 30-33.[34] A. Sidi, M. Israeli, Quadrature methods for periodic singular and weakly singular Fredholm integral equations. J. Sci. Comput., 3(1988), 201-231.[35] A. Sidi, Compact numerical quadrature formulas for hypersingular integrals and integral equations. J. Sci. Comput., 54(2013), 145-176.[36] A. Sidi, Analysis of errors in some recent numerical quadrature formulas for periodic singular and hypersingular integrals via regularization. Appl. Numer. Math., 81(2014), 30-39. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||