Tingting Qin^{1,2}, Chengjian Zhang^{1,2}
Tingting Qin, Chengjian Zhang. A GENERAL CLASS OF ONESTEP APPROXIMATION FOR INDEX1 STOCHASTIC DELAYDIFFERENTIALALGEBRAIC EQUATIONS[J]. Journal of Computational Mathematics, 2019, 37(2): 151169.
[1] A. Alabert and M. Ferrantey, Linear stochatic differentialalgebraic equations with constant coefficients, Elect. Comm. in Probab., 11(2006), 316335. [2] U. Ascher and L.R. Petzold, The numerical solution of delaydifferentialalgebraic equations of retarded and neutral type, SIAM J. Numer. Anal., 32(1995), 16351657. [3] U. Ascher and L.R. Petzold, Computer Methods for Ordinary Differential Equations and DifferentialAlgebraic Equations, SIAM, Philadelphia, 1998. [4] E. Buckwar, Onestep approximations for stochastic functional differential equations, Appl. Numer. Math., 56(2006), 667681. [5] S. Gan, H. Schurz and H. Zhang, Mean square convergence of stochastic θmethods for nonlinear neutral stochastic differential delay equations, Int. J. Numer. Anal. Model., 8(2011), 201213 [6] E. Hairer and G. Wanner, Solving Ordinary Differential Equations Ⅱ:Stiff and DifferentialAlgebraic Problems, SpringerVerlag, Berlin, 1996. [7] R. Hauber, Numerical treatment of retarded differentialalgebraic equations by collocation methods, Adv. Comput. Math., 7(1997), 573592. [8] D. Küpper, A. Kvænø and A. Rößler, A RungeKutta method for index 1 stochastic differentialalgebraic equations with scalar noise, BIT Numer. Math., 52(2012), 437455. [9] D. Küpper, A. Kvænø and A. Rößler, Stability analysis and classification of RungeKutta methods for index 1 stochastic differentialalgebraic equations with scalar noise, Appl. Numer. Math., 96(2015), 2444. [10] T. Luzyanina and D. Roose, Periodic solutions of differential algebraic equations with timedelays:computation and stability analysis, Int. J. Bifurcat. Chaos, 16(2006), 6784. [11] X. Mao, Stochastic Differential Equations and Applications, Horwood, England, 1997. [12] X. Mao and S. Sabanis, Numerical solutions of stochastic differential delay equations under local Lipschitz condition, J. Comput. Appl. Math., 151(2003), 215227. [13] G.N. Milstien, Numerical Integration of Stochastic Differential Equations, Kluwer Academic, Dordrecht, 1995. [14] Y. Niu, C. Zhang and K. Burrage, Strong predictorcorrector approximation for stochastic delay differential equations, J. Comput. Math., 33(2015), 587605. [15] C. Penski, A new numerical method for SDEs and its application in circuit simulation, J. Comput. App. Math., 115(2000), 461470. [16] O. Schein and G. Denk, Numerical solution of stochastic differentialalgebraic equations with applications to transient noise simulation of microelectronic circuits, J. Comput. Appl. Math., 100(1998), 7792. [17] T. Sickenberger, E. Weinmüller and R. Winkler, Local error estimates for moderately smooth problems:Part ⅡSDEs and SDAEs, BIT Numer. Math., 49(2009), 217245. [18] X. Wang, S. Gan and D. Wang, θMaruyama methods for nonlinear stochastic differential delay equations, Appl. Numer. Math., 98(2015), 3858. [19] W. Wang, C. Zhang, Preserving stability implicit Euler method for nonlinear Volterra and neutral functional differential equations in Banach space, Numer. Math., 115(2010), 451474. [20] R. Winkler, Stochastic differential algebraic equations of index 1 and applications in circuit simulation, J. Comput. Appl. Math., 163(2004), 435463. [21] F. Xiao and C. Zhang, Existence and uniqueness of the solution of stochastic differential algebraic equations with delay, Adv. Syst. Sci. Appl., 9(2009), 121127. [22] F. Xiao and C. Zhang, EulerMaruyama methods for a class of stochastic differential algebraic system with time delay, Acta Math. Appl. Sinica, 33(2010), 590600. [23] C. Zhang and G. Sun, The discrete dynamics of nonlinear infintedelaydifferential equations, Appl. Math. Lett., 15(2002), 521526. [24] C. Zhang and S. Vandewalle, Stability criteria for exact and discrete solutions of neutral multidelayintegrodifferential equations, Adv. Comput. Math., 28(2008), 383399. [25] Y. Zhang, Y. Zheng, X. Liu, Q. Zhang and A. Li, Dynamical analysis in a differential algebraic bioeconomic model with stagestructured and stochastic fluctuations, Phys. A, 462(2016), 222 229. [26] W. Zhu and L.R. Petzold, Asymptotic stability of linear delay differentialalgebraic equations and numerical methods, Appl. Numer. Math., 24(1997), 247264. 
[1]  Xiaobing Feng, Yukun Li, Yi Zhang. STRONG CONVERGENCE OF A FULLY DISCRETE FINITE ELEMENT METHOD FOR A CLASS OF SEMILINEAR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS WITH MULTIPLICATIVE NOISE [J]. Journal of Computational Mathematics, 2021, 39(4): 574598. 
[2]  Xiaocui Li, Xu You. MIXED FINITE ELEMENT METHODS FOR FRACTIONAL NAVIERSTOKES EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(1): 130146. 
[3]  Rikard Anton, David Cohen. EXPONENTIAL INTEGRATORS FOR STOCHASTIC SCHRÖDINGER EQUATIONS DRIVEN BY ITÔ NOISE [J]. Journal of Computational Mathematics, 2018, 36(2): 276309. 
[4]  Xiaocui Li, Xiaoyuan Yang. ERROR ESTIMATES OF FINITE ELEMENT METHODS FOR STOCHASTIC FRACTIONAL DIFFERENTIAL EQUATIONS [J]. Journal of Computational Mathematics, 2017, 35(3): 346362. 
[5]  Xiaoyuan Yang, Xiaocui Li, Ruisheng Qi, Yinghan Zhang. FULLDISCRETE FINITE ELEMENT METHOD FOR STOCHASTIC HYPERBOLIC EQUATION [J]. Journal of Computational Mathematics, 2015, 33(5): 533556. 
Viewed  
Full text 


Abstract 

