Caixia Kou1, Zhongwen Chen2, Yuhong Dai3, Haifei Han2
Caixia Kou, Zhongwen Chen, Yuhong Dai, Haifei Han. AN AUGMENTED LAGRANGIAN TRUST REGION METHOD WITH A BI-OBJECT STRATEGY[J]. Journal of Computational Mathematics, 2018, 36(3): 331-350.
[1] R. Andreani, E.G. Birgin, J.M. Martínez and M.L. Schuverdt, Augmented Lagrangian methods under the constant positive linear dependence constraint qualification, Math. Program., 111(2008), 5-32.[2] N.S. Aybat and G. Iyengar, A first-order augmented Lagrangian method for compressed sensing, SIAM J. Optim., 22(2012), 429-459.[3] D.P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Athena Scientific, Belmont, Massachusetts, 1996.[4] E.G. Birgin and J.M. Martínez, Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization, Comput. Optim. Appl., 51(2012), 941-965.[5] P.T. Boggs and J.W. Tolle, Sequential quadratic programming, Acta Numer., 4(1995), 1-51.[6] S. Boyd, N. Parikh, E. Chu, B. Peleato and J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers, Foundations and Trends in Machine Learning, 3:1(2011), 1-122.[7] R.H. Byrd, G. Lopez-Calva and J. Nocedal, A line search exact penalty method using steering rules, Math. Program., 133(2012), 39-73.[8] R.H. Byrd, J. Nocedal and R.A. Waltz, Steering exact penalty methods, Optim. Methods Softw., 23:2(2008), 197-213.[9] Z.W. Chen and Y.H. Dai, A line search exact penalty method with bi-object strategy for nonlinear constrained optimization, J. Comput. Appl. Math., 300(2016), 245-258.[10] L. Chen and D. Goldfarb, Interior-point l2 penalty methods for nonlinear programming with strong global convergence properties, Math. Program., 108:1, (2006), 1-36.[11] A.R. Conn, N.I.M. Gould and Ph. L. Toint, A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds, SIAM J. Numer. Anal., 28(1991), 545-572.[12] A.R. Conn, N.I.M. Gould and Ph. L. Toint, Lancelot:A Fortran Package for Large Scale Nonlinear Optimization (Released A), Springer, New York, 1992.[13] R. Fletcher, Practical Methods of Optimization, 2nd ed., John Wiley and Sons, Chichester, UK, 1987.[14] R. Fletcher, S. Leyffer and Ph. L. Toint, On the global convergence of a filter-SQP algorithm, SIAM J. Optim., 13:1(2002), 44-59.[15] H.W. Ge and Z.W. Chen, A penalty-free method with line search for nonlinear equality constrained optimization, Appl. Math. Model., 37(2013), 9934-9949.[16] N.I.M. Gould and P.L. Toint, Nonlinear programming without a penalty function or a filter, Math. Program., 122(2010), 155-196.[17] M.R. Hestense, Multiplier and gradient method, J. Optim. Theory Appl., 4(1969), 303-320.[18] X.W. Liu and Y.X. Yuan, A robust algorithm for optimization with general equality and inequality constraints, SIAM J. Sci. Comput., 22(2000), 517-534.[19] X W. Liu and Y.X. Yuan, A sequential quadratic programming method without a penalty function or a filter for nonlinear equality constrained optimization, SIAM J. Optim., 21(2011), 545-571.[20] L.F. Niu and Y.X. Yuan, A trust-region algorithm for nonlinear constrained optimization, J. Comput. Math., 1(2010), 72-86.[21] J. Nocedal and S.J. Wright, Numerical Optimization, Springer, 2nd ed., 2006.[22] M.J.D. Powell, A method for nonlinear constraints in minimization problems, in Optimization, Fletcher R., ed., Academic Press, London, 1969, 283-298.[23] S.Q. Qiu and Z.W. Chen, A globally convergent penalty-free method for optimization with general constraints and simple bounds, Acta Appl. Math., 142, (2016), 39-60.[24] X. Wang and Y. X. Yuan, An augmented Lagrangian trust region method for equality constrained optimization, Optim. methods softw., 30(2015), 559-582.[25] J. Yang, Y. Zhang and W. Yin, A fast alternating direction method for tv11-12 signal reconstruction from partial fourier data, IEEE J. Sel. Top. Signal Proces., 4(2010), 288-297.[26] Y.X. Yuan, On the convergence of a new trust region algorithm, Numer. Math., 70(1995), 515-539.[27] Y.X. Yuan, Recent advances in trust region algorithms, Math. Program., 151(2015), 249-281. |
[1] | Xiaoyu Wang, Ya-xiang Yuan. STOCHASTIC TRUST-REGION METHODS WITH TRUST-REGION RADIUS DEPENDING ON PROBABILISTIC MODELS [J]. Journal of Computational Mathematics, 2022, 40(2): 294-334. |
[2] | Yuting Chen, Mingyuan Cao, Yueting Yang, Qingdao Huang. AN ADAPTIVE TRUST-REGION METHOD FOR GENERALIZED EIGENVALUES OF SYMMETRIC TENSORS [J]. Journal of Computational Mathematics, 2021, 39(3): 358-374. |
[3] | Keke Zhang, Hongwei Liu, Zexian Liu. A NEW ADAPTIVE SUBSPACE MINIMIZATION THREE-TERM CONJUGATE GRADIENT ALGORITHM FOR UNCONSTRAINED OPTIMIZATION [J]. Journal of Computational Mathematics, 2021, 39(2): 159-177. |
[4] | Wenjuan Xue, Weiai Liu. A MULTIDIMENSIONAL FILTER SQP ALGORITHM FOR NONLINEAR PROGRAMMING [J]. Journal of Computational Mathematics, 2020, 38(5): 683-704. |
[5] | Bothina El-Sobky, Abdallah Abotahoun. A TRUST-REGION ALGORITHM FOR SOLVING MINI-MAX PROBLEM [J]. Journal of Computational Mathematics, 2018, 36(6): 776-791. |
[6] | Fan Jiang, Deren Han, Xiaofei Zhang. A TRUST-REGION-BASED ALTERNATING LEAST-SQUARES ALGORITHM FOR TENSOR DECOMPOSITIONS [J]. Journal of Computational Mathematics, 2018, 36(3): 351-373. |
[7] | Yangyang Xu. FAST ALGORITHMS FOR HIGHER-ORDER SINGULAR VALUE DECOMPOSITION FROM INCOMPLETE DATA [J]. Journal of Computational Mathematics, 2017, 35(4): 397-422. |
[8] | Jinkui Liu, Shengjie Li. SPECTRAL DY-TYPE PROJECTION METHOD FOR NONLINEAR MONOTONE SYSTEM OF EQUATIONS [J]. Journal of Computational Mathematics, 2015, 33(4): 341-355. |
[9] | Jinghui Liu, Changfeng Ma. A NEW NONMONOTONE TRUST REGION ALGORITHM FOR SOLVING UNCONSTRAINED OPTIMIZATION PROBLEMS [J]. Journal of Computational Mathematics, 2014, 32(4): 476-490. |
[10] | Fusheng Wang, Chuanlong Wang, Li Wang. A NEW TRUST-REGION ALGORITHM FOR FINITE MINIMAX PROBLEM [J]. Journal of Computational Mathematics, 2012, 30(3): 262-278. |
[11] | Xuebin Wang, Changfeng Ma, Meiyan Li. A SMOOTHING TRUST REGION METHOD FOR NCPS BASED ON THE SMOOTHING GENERALIZED FISCHER-BURMEISTER FUNCTION [J]. Journal of Computational Mathematics, 2011, 29(3): 261-286. |
[12] | Duoquan Li. A NEW SQP-FILTER METHOD FOR SOLVING NONLINEAR PROGRAMMING PROBLEMS [J]. Journal of Computational Mathematics, 2006, 24(5): 609-634. |
[13] | Chang-yin Zhou,Guo-ping He,Yong-li Wang . A NEW CONSTRAINTS IDENTIFICATION TECHNIQUE-BASED QP-FREE ALGORITHM FOR THE SOLUTION OF INEQUALITY CONSTRAINED MINIMIZATION PROBLEMS [J]. Journal of Computational Mathematics, 2006, 24(5): 591-608. |
[14] | Xin-long Luo. Singly Diagonally Implicit Runge-Kutta Methods Combining Line Search Techniques for Unconstrained Optimization [J]. Journal of Computational Mathematics, 2005, 23(2): 153-164. |
[15] | De Ren HAN. A TRULY GLOBALLY CONVERGENT FEASIBLE NEWTON-TYPE METHOD FOR MIXED COMPLEMENTARITY PROBLEMS [J]. Journal of Computational Mathematics, 2004, 22(3): 347-360. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||