Previous Articles Next Articles
Liang Ge1, Ningning Yan2, Lianhai Wang3, Wenbin Liu4, Danping Yang5
Liang Ge, Ningning Yan, Lianhai Wang, Wenbin Liu, Danping Yang. HETEROGENEOUS MULTISCALE METHOD FOR OPTIMAL CONTROL PROBLEM GOVERNED BY ELLIPTIC EQUATIONS WITH HIGHLY OSCILLATORY COEFFICIENTS[J]. Journal of Computational Mathematics, 2018, 36(5): 644-660.
[1] A. Abdulle, On a priori error analysis of fully discrete heterogeneous multiscale FEM, SIAM Multiscale Model. Simul., 4:2(2005), 447-459.[2] A. Abdulle, The finite element heterogeneous multiscale method:a computational strategy for multiscale PDEs, GAKUTO Int. Ser. Math. Sci. Appl., 31(2009), 135C184.[3] A. Abdulle, A. Nonnenmacher, A short and versatile finite element multiscale code for homogenization problems, Comput. Methods Appl. Mech. Engrg., 198:37(2009), 2839-2859.[4] G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23:6(1992), 1482- 1518.[5] A. Brandt, Multi-level adaptive solutions to boundary value problems, Math. Comput., 31:138(1977), 333-390.[6] L.Q. Cao, Multiscale asymptotic method of optimal control on the boundary for heat equations of composite materials, J. Math. Anal. Appl., 343:2(2008), 1103-1118.[7] L.Q. Cao, J.J. Liu, W. Allegretto, N.N. Yan, A multiscale approach for optimal control problems of linear parabolic equations, SIAM J. Control Optim., 50:6(2012), 3269-3291.[8] Z. Chen, Multiscale methods for elliptic homogenization problems, Numer. Meth. For PDEs., 22:2(2006), 317-360.[9] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, 1978.[10] M. Dorobantu, B. Engquist, Wavelet-based numerical homogenization, SIAM J. Numer. Anal., 35:2(1998), 540-559.[11] C. A. Duarte and J.T. Oden, An h-p adaptive method using clouds, Comput. Methods Anal. Mech. Engrg., 139:1(1996), 237-262.[12] W. E and B. Engquist, The heterogeneous multiscale methods, Commun. Math. Sci., 1:1(2003), 87-132.[13] W.E, P.Ming, P.Zhang, Analysis of the hetegeous multiscale method for elliptic homogenization problems, J. Amer. Math. Soc., 18:1(2005), 121-156.[14] C. Fabre, J.P. Puel, E. Zuazua, Approximate controllability of the semilinear heat equation, Proc. Roy. Soc. Edinburgh Sect. A, 125:1(1995), 31-62.[15] P. Henning, M. Ohlberger, B. Schweizer, An adaptive multiscale finite element method, SIAM Multiscale Model. Simul., 12:3(2014), 1078-1107.[16] T. Hughes, G. Feijo, L. Mazzei, J.B. Quincy, The variational multiscale method a paradigm for computational mechanics, Comput. Methods Anal. Mech. Engrg., 166:1(1998), 3-24.[17] T.Hou, X.Wu, A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134:1(1997), 169-189.[18] V.V. Jikov, S.M. Kozlov, O.A. Oleinik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, Heidelberg, 1994.[19] S. Kesavan, J. Saint, Homogenization of an optimal control problem, SIAM J. Control Optim., 35:5(1997), 1557-1573.[20] J. Li, A multiscale finite element method for optimal control problems governed by the elliptic homogenization equations, Comput. Math. Appl., 60:3(2010), 390-398.[21] R. Li, W.B. Liu, H.P. Ma, T. Tang, Adaptive finite element approximation of elliptic optimal control, SIAM, J. Control. Optim., 41:5(2002), 1321-1349.[22] J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations, SpringerVerlag, Berlin, 1971.[23] J.L. Lions, Remarks on the theory of optimal control of distributed systems, in Control Theory of Systems Governed by Partial Differential Equations, Academic Press, New York, 1977, 1-103.[24] J.L. Lions, Some Methods in the Mathematical Analysis of Systems and Their Control, Science Press, Beijing, 1981.[25] J.J. Liu, L.Q. Cao, N.N. Yan, Multiscale asymptotic analysis and computation of optimal control for elliptic systems with constraints, SIAM J. Numer. Anal., 51:4(2013), 1978-2004.[26] W.B. Liu, D. Tiba, Error estimates for the finite element approximation of a class of nonlinear optimal control problems, J. Numer. Func. Optim., 22(2001), 953-972.[27] W.B. Liu, N.N Yan, A posteriori error estimates for convex boundary control problems, SIAM J. Numer. Anal., 39:1(2001), 73-99.[28] W.B. Liu, N.N. Yan, A posteriori error analysis for convex distributed optimal control problems, Adv. Comp. Math., 15:4(2001), 285-309.[29] W.B. Liu, N.N, Yan, A posteriori error estimates for optimal control problems governed by parabolic equations, Numer. Math., 93:3(2003), 497-521.[30] W.B. Liu, N.N. Yan, A posteriori error estimates for optimal control of Stokes flows, SIAM, J. Numer. Anal., 40(2003), 1805-1869.[31] W.B. Liu, N.N. Yan, Adaptive Finite Element Methods for Optimal Control Governed by PDEs, Series in Information and Computational Science, Science Press, Beijing, 2008.[32] J.M. Melenk, I.Bäbuska, The partition of unity finite element method:basic theory and applications, Comput. Methods Appl. Meh. Engrg., 139:1(1996), 289-314.[33] P.B. Ming, X.Y. Yue, Numerical methods for multiscale elliptic problems, J. Comput. Phy., 214:1(2006), 421-445.[34] M. Sarkis, Nonstandard coase spaces and schwarz methods for elliptic problems with discontinous coefficients using non-conforming elements, Numer. Math., 77:3(1997), 383-406.[35] J. Xu, L. T. Zikatanov, On multigrid methods for generalized finite element methods, Comput. Sci. Eng., 26(2003), 401-418.[36] D.P. Yang, W.B. Liu, Y.Z. Chang, A priori error estimate and superconvergence analysis for an optimal control problem of bilinear type, J. Comput. Math., 26:4(2008), 471-487.[37] H. Zoubairi, Optimal control and homogenization in a mixture of fluids separated by a rapidly oscillating interface, Electron. J. Diff. Equ., 2002:27(2002), 1-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||