Previous Articles     Next Articles

TIME DOMAIN BOUNDARY ELEMENT METHODS FOR THE NEUMANN PROBLEM: ERROR ESTIMATES AND ACOUSTIC PROBLEMS

Heiko Gimperlein1, Ceyhun Özdemir2, Ernst P. Stephan2   

  1. 1. Maxwell Institute for Mathematical Sciences and Department of Mathematics, Heriot-Watt University, Edinburgh EH14;
    4 AS, UK, and Institute for Mathematics, University of Paderborn, 33098 Paderborn, Germany;
    2. Institute of Applied Mathematics, Leibniz University Hannover, 30167 Hannover, Germany
  • Received:2016-01-04 Revised:2016-10-18 Online:2018-01-15 Published:2018-01-15
  • Supported by:

    Parts of this work were funded by BMWi under the project SPERoN 2020, part Ⅱ, Leiser Straßenverkehr, grant number 19 U 10016 F. H. G. acknowledges support by ERC Advanced Grant HARG 268105. C. O. is supported by a scholarship of the Avicenna foundation.

Heiko Gimperlein, Ceyhun Özdemir, Ernst P. Stephan. TIME DOMAIN BOUNDARY ELEMENT METHODS FOR THE NEUMANN PROBLEM: ERROR ESTIMATES AND ACOUSTIC PROBLEMS[J]. Journal of Computational Mathematics, 2018, 36(1): 70-89.

We investigate time domain boundary element methods for the wave equation in R3, with a view towards sound emission problems in computational acoustics. The Neumann problem is reduced to a time dependent integral equation for the hypersingular operator, and we present a priori and a posteriori error estimates for conforming Galerkin approximations in the more general case of a screen. Numerical experiments validate the convergence of our boundary element scheme and compare it with the numerical approximations obtained from an integral equation of the second kind. Computations in a half-space illustrate the influence of the reflection properties of a flat street.

CLC Number: 

[1] A. Bamberger, T. Ha Duong, Formulation variationnelle espace-temps pour le calcul par potentiel retard de la diffraction d'une onde acoustique, Math. Meth. Appl. Sci., 8(1986), 405-435 and 598-608.

[2] L. Banz, H. Gimperlein, Z. Nezhi, E.P. Stephan, Time domain BEM for sound radiation of tires, Comput. Mech., 58(2016), 45-57.

[3] M. Costabel, Time dependent problems with the boundary integral equation method. In Encyclopedia of Computational Mechanics, E. Stein, R. de Borst, and J. R. Hughes, Eds. John Wiley & Sons, Chichester, 2004, 703-721.

[4] T.A. Cruse, F.J. Rizzo, A direct formulation and numerical solution of the general transient elastodynamic problem I, J. Math. Analysis Appl., 22(1968), 244-259.

[5] Y. Ding, A. Forestier, T. Ha Duong, A Galerkin scheme for the time domain integral equation of acoustic scattering from a hard surface, J. Acoust. Soc. Am., 86(1989), 1566-1572.

[6] O. von Estorff et al., Abschlussbericht SPERoN 2020, Teil Ⅱ, Entwicklung eines performanten Rechenmodells zur Berechnung und Reduzierung der Geräuschabstrahlung von Reifen, 2014.

[7] M. Friedmann, R. Shaw, Diffraction of pulses by cylindrical obstacles of arbitrary cross section, J. Appl. Mech., 29(1962), 40-46.

[8] H. Gimperlein, M. Maischak, E.P. Stephan, Adaptive time domain boundary element methods and engineering applications, Journal of Integral Equations and Applications, 29(2017), 75-105.

[9] H. Gimperlein, Z. Nezhi, E.P. Stephan, A priori error estimates for a time dependent boundary element method for the acoustic wave equation in a half-space, Mathematical Methods in the Applied Sciences, 40(2017), 448-462.

[10] H. Gimperlein, C. Oezdemir, D. Stark, E.P. Stephan, A residual a posteriori error estimate for the time domain boundary element method, preprint.

[11] M. Gläfke, Adaptive Methods for Time Domain Boundary Integral Equations, Ph.D. thesis, Brunel University, 2012.

[12] T. Ha Duong, Equations Integrales Pour la Resolution Numerique des Problemes de Diffraction d'ondes Acoustiques dans R3, Ph.D. Thesis, Paris VI, 1987.

[13] T. Ha Duong, On retarded potential boundary integral equations and their discretizations, in:Topics in computational wave propagation, pp. 301-336, Lect. Notes Comput. Sci. Eng., 31, Springer, Berlin, 2003.

[14] T. Ha Duong, B. Ludwig and I. Terrasse, A Galerkin BEM for transient acoustic scattering by an absorbing obstacle, Internat. J. Numer. Methods Engrg., 57(2003), 1845-1882.

[15] M. Ochmann, Closed form solutions for the acoustical impulse response over a masslike or an absorbing plane, J. Acoust. Soc. Am., 129:62011.

[16] E. Ostermann, Numerical Methods for Space-Time Variational Formulations of Retarded Potential Boundary Integral Equations, Ph.D. Thesis, Leibniz Universität Hannover, 2009.

[17] S. Sauter, A. Veit, Adaptive time discretization for retarded potentials, Numer. Math., 132(2016), 569-595.

[18] F.-J. Sayas, Retarded Potentials and Time Domain Boundary Integral Equations:A Road-Map, Springer Series in Comp. Math. 50, Springer, 2016.

[19] I. Terrasse, Résolution Mathématique et Numérique des Équations de Maxwell Instationnaires parune Méthode de Potentiels Retardés, Ph.D. Thesis, Ecole Polytechnique, Palaiseau, 1993.

[20] A. Veit, Numerical Methods for the Time Domain Boundary Integral Equations, Ph.D. Thesis, Universität Zürich, 2011.

[21] A.E. Yilmaz, J.M. Jin, E. Michielssen, Time domain adaptive integral method for surface integral equations, IEEE Trans. Antennas Propagation, 52(2004) 2692-2708.
[1] Ram Manohar, Rajen Kumar Sinha. ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR FULLY DISCRETE SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS [J]. Journal of Computational Mathematics, 2022, 40(2): 147-176.
[2] Huaijun Yang, Dongyang Shi. UNCONDITIONALLY OPTIMAL ERROR ESTIMATES OF THE BILINEAR-CONSTANT SCHEME FOR TIME-DEPENDENT NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2022, 40(1): 127-146.
[3] Xiaoliang Song, Bo Chen, Bo Yu. ERROR ESTIMATES FOR SPARSE OPTIMAL CONTROL PROBLEMS BY PIECEWISE LINEAR FINITE ELEMENT APPROXIMATION [J]. Journal of Computational Mathematics, 2021, 39(3): 471-492.
[4] Xiaocui Li, Xu You. MIXED FINITE ELEMENT METHODS FOR FRACTIONAL NAVIER-STOKES EQUATIONS [J]. Journal of Computational Mathematics, 2021, 39(1): 130-146.
[5] Michael Holst, Yuwen Li, Adam Mihalik, Ryan Szypowski. CONVERGENCE AND OPTIMALITY OF ADAPTIVE MIXED METHODS FOR POISSON'S EQUATION IN THE FEEC FRAMEWORK [J]. Journal of Computational Mathematics, 2020, 38(5): 748-767.
[6] Li Cai, Ye Sun, Feifei Jing, Yiqiang Li, Xiaoqin Shen, Yufeng Nie. A FULLY DISCRETE IMPLICIT-EXPLICIT FINITE ELEMENT METHOD FOR SOLVING THE FITZHUGH-NAGUMO MODEL [J]. Journal of Computational Mathematics, 2020, 38(3): 469-486.
[7] Huoyuan Duan, Roger C. E. Tan. ERROR ANALYSIS OF A STABILIZED FINITE ELEMENT METHOD FOR THE GENERALIZED STOKES PROBLEM [J]. Journal of Computational Mathematics, 2020, 38(2): 254-290.
[8] Nikolaus von Daniels, Michael Hinze. VARIATIONAL DISCRETIZATION OF A CONTROL-CONSTRAINED PARABOLIC BANG-BANG OPTIMAL CONTROL PROBLEM [J]. Journal of Computational Mathematics, 2020, 38(1): 14-40.
[9] Hai Bi, Yidu Yang, Yuanyuan Yu, Jiayu Han. NEW ERROR ESTIMATES FOR LINEAR TRIANGLE FINITE ELEMENTS IN THE STEKLOV EIGENVALUE PROBLEM [J]. Journal of Computational Mathematics, 2018, 36(5): 682-692.
[10] Fei Wang, Shuo Zhang. OPTIMAL QUADRATIC NITSCHE EXTENDED FINITE ELEMENT METHOD FOR INTERFACE PROBLEM OF DIFFUSION EQUATION [J]. Journal of Computational Mathematics, 2018, 36(5): 693-717.
[11] Xiaoli Li, Hongxing Rui. BLOCK-CENTERED FINITE DIFFERENCE METHODS FOR NON-FICKIAN FLOW IN POROUS MEDIA [J]. Journal of Computational Mathematics, 2018, 36(4): 492-516.
[12] Liang Ge, Tongjun Sun. A SPARSE GRID STOCHASTIC COLLOCATION AND FINITE VOLUME ELEMENT METHOD FOR CONSTRAINED OPTIMAL CONTROL PROBLEM GOVERNED BY RANDOM ELLIPTIC EQUATIONS [J]. Journal of Computational Mathematics, 2018, 36(2): 310-330.
[13] Michael Ulbrich, Stefan Ulbrich, Daniela Bratzke. A MULTIGRID SEMISMOOTH NEWTON METHOD FOR SEMILINEAR CONTACT PROBLEMS [J]. Journal of Computational Mathematics, 2017, 35(4): 486-528.
[14] Xiaocui Li, Xiaoyuan Yang. ERROR ESTIMATES OF FINITE ELEMENT METHODS FOR STOCHASTIC FRACTIONAL DIFFERENTIAL EQUATIONS [J]. Journal of Computational Mathematics, 2017, 35(3): 346-362.
[15] Weidong Zhao, Wei Zhang, Guannan Zhang. SECOND-ORDER NUMERICAL SCHEMES FOR DECOUPLED FORWARD-BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS WITH JUMPS [J]. Journal of Computational Mathematics, 2017, 35(2): 213-244.
Viewed
Full text


Abstract