Previous Articles Next Articles
Yangyang Xu
Yangyang Xu. FAST ALGORITHMS FOR HIGHERORDER SINGULAR VALUE DECOMPOSITION FROM INCOMPLETE DATA[J]. Journal of Computational Mathematics, 2017, 35(4): 397422.
[1] E. Acar, D. M. Dunlavy, T. G. Kolda, and M. Mørup, Scalable tensor factorizations with missing data., in Proceedings of the SIAM International Conference on Data Mining, (2010), 701712. [2] A. Beck and M. Teboulle, A fast iterative shrinkagethresholding algorithm for linear inverse problems, SIAM Journal on Imaging Sciences, 2(2009), 183202. [3] D. P. Bertsekas, Nonlinear Programming, Athena Scientific, September 1999. [4] A. M. Buchanan and A. W. Fitzgibbon, Damped newton algorithms for matrix factorization with missing data, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2(2005), 316322. [5] Y. Chen, C. Hsu, and H. Liao, Simultaneous tensor decomposition and completion using factor priors, (2013). [6] L. De Lathauwer, B. De Moor, and J. Vandewalle, A multilinear singular value decomposition, SIAM Journal on Matrix Analysis and Applications, 21(2000), 12531278. [7] L. De Lathauwer, B. De Moor, and J. Vandewalle, On the best rank1 and rank(r1, r12..., r_{n}) approximation of higherorder tensors, SIAM Journal on Matrix Analysis and Applications, 21(2000), 13241342. [8] M. Filipovi? and A. Juki?, Tucker factorization with missing data with application to lownrank tensor completion, Multidimensional Systems and Signal Processing, (2013), 116. [9] K. R. Gabriel and S. Zamir, Lower rank approximation of matrices by least squares with any choice of weights, Technometrics, 21(1979), 489498. [10] S. Gandy, B. Recht, and I. Yamada, Tensor completion and lownrank tensor recovery via convex optimization, Inverse Problems, 27(2011), 119. [11] X. Geng and K. SmithMiles, Facial age estimation by multilinear subspace analysis, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (2009), 865868. [12] X. Geng, K. SmithMiles, Z.H. Zhou, and L. Wang, Face image modeling by multilinear subspace analysis with missing values, IEEE Transactions on Systems, Man, and Cybernetics, Part B:Cybernetics, 41(2011), 881892. [13] A. S. Georghiades, P. N. Belhumeur, and D. Kriegman, From few to many:Illumination cone models for face recognition under variable lighting and pose, IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(2001), 643660. [14] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, third ed., 1996. [15] R. Horn and C. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991. [16] B. Huang, C. Mu, D. Goldfarb, and J. Wright, Provable lowrank tensor recovery, Pacific Journal of Optimization, 11(2015), 339364. [17] T. Kolda and B. Bader, Tensor decompositions and applications, SIAM Review, 51(2009), 455500. [18] N. Kreimer and M. D. Sacchi, A tensor higherorder singular value decomposition for prestack seismic data noise reduction and interpolation, Geophysics, 77(2012), 113122. [19] D. Kressner, M. Steinlechner, and B. Vandereycken, Lowrank tensor completion by riemannian optimization, BIT Numerical Mathematics, (2013), 122. [20] M. Kurucz, A. A. Benczúr, and K. Csalogány, Methods for large scale SVD with missing values, in Proceedings of KDD Cup and Workshop, 12, 2007, 3138. [21] K.C. Lee, J. Ho, and D. Kriegman, Acquiring linear subspaces for face recognition under variable lighting, IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(2005), 684698. [22] Q. Ling, Y. Xu, W. Yin, and Z. Wen, Decentralized lowrank matrix completion, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), (2012), 29252928. [23] J. Liu, P. Musialski, P. Wonka, and J. Ye, Tensor completion for estimating missing values in visual data, IEEE Transactions on Pattern Analysis and Machine Intelligence, (2013), 208220. [24] Y. Liu, F. Shang, H. Cheng, J. Cheng, and H. Tong, Factor matrix trace norm minimization for lowrank tensor completion, Proceedings of the 2014 SIAM International Conference on Data Mining, (2014). [25] L. Mirsky, A trace inequality of John von Neumann, Monatshefte für mathematik, 79(1975), 303306. [26] M. Mørup, L. Hansen, and S. Arnfred, Algorithms for sparse nonnegative Tucker decompositions, Neural Computation, 20(2008), 21122131. [27] C. Mu, B. Huang, J. Wright, and D. Goldfarb, Square deal:Lower bounds and improved relaxations for tensor recovery, arXiv preprint arXiv:1307.5870, (2013). [28] L. Omberg, G. H. Golub, and O. Alter, A tensor higherorder singular value decomposition for integrative analysis of dna microarray data from different studies, Proceedings of the National Academy of Sciences, 104(2007), 1837118376. [29] P. Paatero, A weighted nonnegative least squares algorithm for threeway parafacfactor analysis, Chemometrics and Intelligent Laboratory Systems, 38(1997), 223242. [30] Z. Peng, T. Wu, Y. Xu, M. Yan, and W. Yin, Coordinate Friendly Structures, Algorithms and Applications, Annals of Mathematical Sciences and Applications, 1(2016), 57119. [31] A. Phan, P. Tichavsky, and A. Cichocki, Damped GaussNewton algorithm for nonnegative tucker decomposition, in IEEE Statistical Signal Processing Workshop (SSP), (2011), 665668. [32] B. RomeraParedes and M. Pontil, A new convex relaxation for tensor completion, arXiv preprint arXiv:1307.4653, (2013). [33] A. Ruhe, Numerical computation of principal components when several observations are missing, University of Umea, Institute of Mathematics and Statistics Report, (1974). [34] B. Savas and L. Eldén, Handwritten digit classification using higher order singular value decomposition, Pattern recognition, 40(2007), 9931003. [35] L. Sorber, M. Van Barel, and L. De Lathauwer, Structured data fusion, ESATSTADIUS, KU Leuven, Belgium, Tech. Rep, (2013), 13177. [36] N. Srebro and T. Jaakkola, Weighted lowrank approximations, in Machine Learning International Workshop, 20(2003), 720727. [37] J.T. Sun, H.J. Zeng, H. Liu, Y. Lu, and Z. Chen, Cubesvd:a novel approach to personalized web search, in Proceedings of the 14th international conference on World Wide Web, ACM, 2005, 382390. [38] G. Tomasi and R. Bro, Parafac and missing values, Chemometrics and Intelligent Laboratory Systems, 75(2005), 163180. [39] A. Uschmajew, A new convergence proof for the highorder power method and generalizations, Arxiv preprint arXiv:1407.4586, (2014). [40] M. A. O. Vasilescu, Human motion signatures:Analysis, synthesis, recognition, in Proceedings of IEEE 16th International Conference on Pattern Recognition, 3(2002), 456460. [41] M. A. O. Vasilescu and D. Terzopoulos, Multilinear image analysis for facial recognition, in IEEE Computer Society International Conference on Pattern Recognition, 2(2002), 2051120511. [42] B. Walczak and D. Massart, Dealing with missing data:Part i, Chemometrics and Intelligent Laboratory Systems, 58(2001), 1527. [43] Z. Wen, W. Yin, and Y. Zhang, Solving a lowrank factorization model for matrix completion by a nonlinear successive overrelaxation algorithm, Mathematical Programming Computation, 4(2012), 333361. [44] Y. Xu, Alternating proximal gradient method for sparse nonnegative Tucker decomposition, Mathematical Programming Computation, 7(2015), 3970. [45] Y. Xu, R. Hao, W. Yin, and Z. Su, Parallel matrix factorization for lowrank tensor completion, Inverse Problems and Imaging, 9(2015), 601624. [46] Y. Xu and W. Yin, A block coordinate descent method for regularized multiconvex optimization with applications to nonnegative tensor factorization and completion, SIAM Journal on Imaging Sciences, 6(2013), 17581789. [47] Y. Xu, W. Yin, Z. Wen, and Y. Zhang, An alternating direction algorithm for matrix completion with nonnegative factors, Frontiers of Mathematics in China, 7(2012), 365384. [48] M. Yuan and C.H. Zhang, On tensor completion via nuclear norm minimization, Foundations of Computational Mathematics, (2015), 138. [49] T. Zhang and G. H. Golub, Rankone approximation to high order tensors, SIAM Journal on Matrix Analysis and Applications, 23(2001), 534550. [50] Q. Zhao, L. Zhang, and A. Cichocki, Bayesian CP factorization of incomplete tensors with automatic rank determination, arXiv preprint arXiv:1401.6497, (2014). 
[1]  Xiaoyu Wang, Yaxiang Yuan. STOCHASTIC TRUSTREGION METHODS WITH TRUSTREGION RADIUS DEPENDING ON PROBABILISTIC MODELS [J]. Journal of Computational Mathematics, 2022, 40(2): 294334. 
[2]  Yuting Chen, Mingyuan Cao, Yueting Yang, Qingdao Huang. AN ADAPTIVE TRUSTREGION METHOD FOR GENERALIZED EIGENVALUES OF SYMMETRIC TENSORS [J]. Journal of Computational Mathematics, 2021, 39(3): 358374. 
[3]  Keke Zhang, Hongwei Liu, Zexian Liu. A NEW ADAPTIVE SUBSPACE MINIMIZATION THREETERM CONJUGATE GRADIENT ALGORITHM FOR UNCONSTRAINED OPTIMIZATION [J]. Journal of Computational Mathematics, 2021, 39(2): 159177. 
[4]  Wenjuan Xue, Weiai Liu. A MULTIDIMENSIONAL FILTER SQP ALGORITHM FOR NONLINEAR PROGRAMMING [J]. Journal of Computational Mathematics, 2020, 38(5): 683704. 
[5]  Meng Huang, Zhiqiang Xu. SOLVING SYSTEMS OF QUADRATIC EQUATIONS VIA EXPONENTIALTYPE GRADIENT DESCENT ALGORITHM [J]. Journal of Computational Mathematics, 2020, 38(4): 638660. 
[6]  Bothina ElSobky, Abdallah Abotahoun. A TRUSTREGION ALGORITHM FOR SOLVING MINIMAX PROBLEM [J]. Journal of Computational Mathematics, 2018, 36(6): 776791. 
[7]  Fan Jiang, Deren Han, Xiaofei Zhang. A TRUSTREGIONBASED ALTERNATING LEASTSQUARES ALGORITHM FOR TENSOR DECOMPOSITIONS [J]. Journal of Computational Mathematics, 2018, 36(3): 351373. 
[8]  Caixia Kou, Zhongwen Chen, Yuhong Dai, Haifei Han. AN AUGMENTED LAGRANGIAN TRUST REGION METHOD WITH A BIOBJECT STRATEGY [J]. Journal of Computational Mathematics, 2018, 36(3): 331350. 
[9]  Jinkui Liu, Shengjie Li. SPECTRAL DYTYPE PROJECTION METHOD FOR NONLINEAR MONOTONE SYSTEM OF EQUATIONS [J]. Journal of Computational Mathematics, 2015, 33(4): 341355. 
[10]  Jinghui Liu, Changfeng Ma. A NEW NONMONOTONE TRUST REGION ALGORITHM FOR SOLVING UNCONSTRAINED OPTIMIZATION PROBLEMS [J]. Journal of Computational Mathematics, 2014, 32(4): 476490. 
[11]  Fusheng Wang, Chuanlong Wang, Li Wang. A NEW TRUSTREGION ALGORITHM FOR FINITE MINIMAX PROBLEM [J]. Journal of Computational Mathematics, 2012, 30(3): 262278. 
[12]  Xuebin Wang, Changfeng Ma, Meiyan Li. A SMOOTHING TRUST REGION METHOD FOR NCPS BASED ON THE SMOOTHING GENERALIZED FISCHERBURMEISTER FUNCTION [J]. Journal of Computational Mathematics, 2011, 29(3): 261286. 
[13]  Duoquan Li. A NEW SQPFILTER METHOD FOR SOLVING NONLINEAR PROGRAMMING PROBLEMS [J]. Journal of Computational Mathematics, 2006, 24(5): 609634. 
[14]  Changyin Zhou,Guoping He,Yongli Wang . A NEW CONSTRAINTS IDENTIFICATION TECHNIQUEBASED QPFREE ALGORITHM FOR THE SOLUTION OF INEQUALITY CONSTRAINED MINIMIZATION PROBLEMS [J]. Journal of Computational Mathematics, 2006, 24(5): 591608. 
[15]  Xinlong Luo. Singly Diagonally Implicit RungeKutta Methods Combining Line Search Techniques for Unconstrained Optimization [J]. Journal of Computational Mathematics, 2005, 23(2): 153164. 
Viewed  
Full text 


Abstract 

