• Original Articles • Previous Articles Next Articles
Yonghong Ren1, Fangfang Guo2, Yang Li3
Yonghong Ren, Fangfang Guo, Yang Li. NONLINEAR LAGRANGIANS FOR NONLINEAR PROGRAMMING BASED ON MODIFIED FISCHER-BURMEISTER NCP FUNCTIONS[J]. Journal of Computational Mathematics, 2015, 33(4): 396-414.
[1] A. Auslender, R. Cominetti and M. Haddou, Asymptotic analysis of penalty and barrier methods in convex and linear programming, Mathematics of Operations Research, 22(1997), 43-62.[2] A. Ben-Tel and M. Zibulevsky, Penalty/barrier multiplier methods for convex programming problems, SIAM Journal on Optimization, 7(2)(1997), 347-366.[3] D.P. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods, Academic Press, New York, 1982.[4] D.P. Bertsekas, Nonlinear Programming, 2nd ed., Athena Scientific, Belmont, Massachusetts, 1999.[5] C. Charalambous, Nonliear least pth optimization and nonlinear programming, Mathematical Programming, 12(1977), 195-225.[6] D. Goldfarb, R. Polyak, K. Scheinberg and I. Yuzeforich, A modified barrier-augmented Lagrangian method for constrained minimization, Computational Optimization and Applications, 14(1999), 55-74.[7] J.P. Dussault, Augmented non-quadratic penalty algorithms, Mathematical Programming, 99(2004), 467-486.[8] I. Griva and R.A. Polyak, Primal-dual nonlinear rescaling method with dynamic scaling parameter update, Mathematical Programming, 106(2)(2006), 237C259 .[9] M.R. Hestenes, Multiplier and gradient method, Journal on Optimization Theory and Applications, 4(1969), 303-320.[10] C. Kanzow and H. Kleinmichel, A new class of semismooth Newton-type methods for nonlinear complementarity Problems, Computational Optimization and Applications, 11(1998), 227-251.[11] D. Li, Zero duality gap for a class of nonconvex optimization problems, Journal of Optimization Theory and Applications, 85(1995), 309-323.[12] L. Lukšan and J. Vlcek, Test problems for nonsmooth unconstrained and linearly constrained optimization, Technical Report 798(2000), Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague.[13] O.L. Mangasarian, Unconstrained Lagrangians in nonlinear programming, SIAM Journal on Control, 13(1975), 772-791.[14] R.A. Polyak, Modified barrier function: theory and mehtods, Mathematical Programming, 54(1992), 177-222.[15] R.A. Polyak, Log-Sigmoid multipliers method in constrained optimization, Annals of operations Research, 101(2001), 427-460.[16] R.A. Polyak, Nonlinear rescaling vs. smoothing technique in convex optimization, Mathematical Programming, 92(2002), 197-235.[17] R.A. Polyak and I. Griva, Primal-Dual nonlinear rescaling method for convex optimization, Journal of Optimization Theory and Applications, 122(2004), 111-156.[18] R.A. Polyak and M. Teboulle, Nonlinear rescaling and classical-like methods in convex optimization, Mathematical Programming , 76(1997), 265-284.[19] M.J.D. Powell, A method for nonlinear constraints in minimization problems, In Optimization (R. Fletcher, ed.), Academic Press, New York, 283-298, 1969.[20] Y.H. Ren, L.W. Zhang and X.T. Xiao, A nonlinear Lagrangian based on Fischer-Burmeister NCP function. Applied Mathematics and Computation, 188(2007), 1344-1363.[21] R.T. Rockafellar, A dual approach to solving nonlinear programming problems by unconstrained optimization, Mathematical programming, 5(1973), 354-373.[22] R.T. Rockafellar, The multiplier method of Hestenes and Powell applied to convex programming, Journal of Optimization Theory and Applications, 12(1973), 555-562.[23] R.T. Rockafellar, Augmented Lagrange multiplier functions and duality in nonconvex programming, SIAM Journal on Control, 12(1974), 268-285.[24] L.W. Zhang, Y.H. Ren, Y. Wu and X.T. Xiao, A class of nonlinear Lagrangians: theory and algorithm, Asia-Pacific Journal of Operational Research, 25:3 (2008), 327-371. |
[1] | Kaibo Hu, Ragnar Winther. WELL-CONDITIONED FRAMES FOR HIGH ORDER FINITE ELEMENT METHODS [J]. Journal of Computational Mathematics, 2021, 39(3): 333-357. |
[2] | Wenjuan Xue, Weiai Liu. A MULTIDIMENSIONAL FILTER SQP ALGORITHM FOR NONLINEAR PROGRAMMING [J]. Journal of Computational Mathematics, 2020, 38(5): 683-704. |
[3] | Lingsheng Meng, Bing Zheng. STRUCTURED CONDITION NUMBERS FOR THE TIKHONOV REGULARIZATION OF DISCRETE ILL-POSED PROBLEMS [J]. Journal of Computational Mathematics, 2017, 35(2): 169-186. |
[4] | Xiaoying Zhang, Yumei Huang. ON BLOCK PRECONDITIONERS FOR PDE-CONSTRAINED OPTIMIZATION PROBLEMS [J]. Journal of Computational Mathematics, 2014, 32(3): 272-283. |
[5] | El-Sayed M.E. Mostafa. A CONJUGATE GRADIENT METHOD FOR DISCRETE-TIME OUTPUT FEEDBACK CONTROL DESIGN [J]. Journal of Computational Mathematics, 2012, 30(3): 279-297. |
[6] | El-Sayed M.E. Mostafa . FIRST-ORDER METHODS FOR SOLVING THE OPTIMAL STATIC ${\cal H}_\infty$-SYNTHESIS PROBLEM [J]. Journal of Computational Mathematics, 2007, 25(6): 672-689. |
[7] | Yimin Wei, Huaian Diao, Sanzheng Qiao . CONDITION NUMBER FOR WEIGHTED LINEAR LEAST SQUARES PROBLEM [J]. Journal of Computational Mathematics, 2007, 25(5): 561-572. |
[8] | Yun-qing Huang,Shi Shu,Xi-jun Yu. PRECONDITIONING HIGHER ORDER FINITE ELEMENT SYSTEMS BY ALGEBRAICMULTIGRID METHOD OF LINEAR ELEMENTS [J]. Journal of Computational Mathematics, 2006, 24(5): 657-664. |
[9] | Duoquan Li. A NEW SQP-FILTER METHOD FOR SOLVING NONLINEAR PROGRAMMING PROBLEMS [J]. Journal of Computational Mathematics, 2006, 24(5): 609-634. |
[10] | Yu Hong DAI,Da Chuan XU. A NEW FAMILY OF TRUST REGION ALGORITHMS FOR UNCONSTRAINED OPTIMIZATION [J]. Journal of Computational Mathematics, 2003, 21(2): 221-228. |
[11] | Jian Guo LIU. AN INTERIOR TRUST REGION ALGORITHM FOR NONLINEAR MINIMIZATION WITH LINEAR CONSTRAINTS [J]. Journal of Computational Mathematics, 2002, 20(3): 225-244. |
[12] | Qi Ya HU,De Hao YU. A PRECONDITIONER FOR COUPLING SYSTEM OF NATURAL BOUNDARY ELEMENT AND COMPOSITE GRID FINITE ELEMENT [J]. Journal of Computational Mathematics, 2002, 20(2): 165-174. |
[13] | Qin NI. GLOBAL CONVERGENCE AND IMPLEMENTATION OF NGTN METHOD FOR SOWING LARGE-SCALE SMRSE NONLINEAR PROGRAMMING PROBLEMS [J]. Journal of Computational Mathematics, 2001, 19(4): 337-346. |
[14] | Xin Wei LIU,Ya Xiang YUAN. A ROBUST TRUST REGION ALGORITHM FOR SOLVING GENERAL NONLINEAR PROGRAMMING [J]. Journal of Computational Mathematics, 2001, 19(3): 309-322. |
[15] | Wei Qing REN, Jin Xi ZHAO. ITERATIVE METHODS WITH PRECONDITIONERS FORINDEFINITE SYSTEMS [J]. Journal of Computational Mathematics, 1999, 17(1): 89-96. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||