• Original Articles • Previous Articles Next Articles
Yuping Zeng1, Jinru Chen2, Feng Wang2, Yanxia Meng2
Yuping Zeng, Jinru Chen, Feng Wang, Yanxia Meng. A PRIORI AND A POSTERIORI ERROR ESTIMATES OF A WEAKLY OVER-PENALIZED INTERIOR PENALTY METHOD FOR NON-SELF-ADJOINT AND INDEFINITE PROBLEMS[J]. Journal of Computational Mathematics, 2014, 32(3): 332-347.
[1] M. Ainsworth, A posteriori error estimation for discontinuous Galerkin finite element approximation, SIAM J. Numer. Anal., 45 (2007), 1777-1798.[2] D.N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal., 19 (1982), 742-760.[3] D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., 39 (2002), 1749-1779.[4] A.T. Barker and S.C. Brenner, A mixed finite element method for the Stokes equations based on a weakly over-penalized symmetric interior penalty approach, J. Sci. Comput., 58 (2014), 290-307.[5] R. Becker, P. Hansbo and M. Larson, Energy norm a posteriori error estimation for discontinuous Galerkin methods, Comput. Methods Appl. Mech. Engrg., 192 (2003), 723-733.[6] S.C. Brenner, Poincaré-Friedrichs inequalities for piecewise H1 functions, SIAM J. Numer. Anal., 41 (2003), 306-324.[7] S.C. Brenner, L. Owens and L.Y Sung, A weakly over-penalized symmetric interior penalty method, Electron. Trans. Numer. Anal., 30 (2008), 107-127.[8] S.C. Brenner, T. Gudi and L.Y. Sung, A posteriori error control for a weakly over-penalized symmetric interior penalty method, J. Sci. Comput., 40 (2009), 37-50.[9] S.C. Brenner, T. Gudi and L.Y. Sung, A weakly over-penalized symmetric interior penalty method for the biharmonic problem, Electron. Trans. Numer. Anal., 37 (2010), 214-238.[10] H. Chen, X. Xu and R.H.W. Hoppe, Convergence and quasi-optimality of adaptive nonconforming finite element methods for some nonsymmetric and indefinite problems, Numer. Math., 116(2010), 383-419.[11] L. Chen and C. Zhang, AFEM@matlab: a Matlab package of adaptive finite element methods, Technical report, University of Maryland at College Park, 2006.[12] Z. Chen, D.Y. Kwak and Y.J. Yon, Multigrid algorithms for nonconforming and mixed methods for nonsymmetric and indefinite problems. SIAM J. Sci. Comput., 19 (1998), 502-515.[13] P. Clément, Approximation by finite element functions using local regularization, RAIRO Anal. Numér., 2 (1975), 77-84.[14] B. Cockburn, G.E. Karniadakis and C.W. Shu (Eds.), Discontinuous Galerkin Methods–Theory, Computation and Applications, Lecture Notes in Computational Science and Engineering 11. Springer-Verlag, New York, 2000.[15] A. Ern and J. Proft, A posteriori discontinuous Galerkin error estimates for transient convectiondiffusion equations, Appl. Math. Lett., 18 (2005), 833-841.[16] E.H. Georgoulis, Discontinuous Galerkin Methods for Linear Problems: An Introduction, In E. H. Georgoulis, A. Iske, and J. Levesley (eds.), Approximation Algorithms for Complex Systems, Springer Proceedings in Mathematics, Vol. 3, Springer-Verlag, Berlin, 2011.[17] T. Gudi and A.K. Pani, Discontinuous Galerkin methods for quasi-linear elliptic problems of nonmonotone type, SIAM J. Numer. Anal., 45 (2007), 163-192.[18] T. Gudi, Some nonstandard error analysis of discontinuous Galerkin methods for elliptic problems, Calcolo, 47 (2010), 239-261.[19] P. Houston, D. Sch¨otzau and T.P. Wihler, Energy norm a posteriori error estimation of hpadaptive discontinuous Galerkin methods for elliptic problems, Math. Models Methods Appl. Sci., 17 (2007), 33-62.[20] O.A. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second-order elliptic problems, SIAM J. Numer. Anal., 41 (2003), 2374-2399.[21] K. Mekchay and R.H. Nochetto, Convergence of adaptive finite element methods for general second order linear elliptic PDEs, SIAM J. Numer. Anal., 43 (2005), 1803-1827.[22] B. Rivière and M.F. Wheeler, A posteriori error estimates for a discontinuous Galerkin method applied to elliptic problems, Comput. Math. Appl., 46 (2003), 141-163.[23] B. Rivière, M.F. Wheeler and V. Girault, A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems, SIAM J. Numer. Anal., 39 (2001), 902-931.[24] A. Romkes, S. Prudhomme and J.T. Oden, A posteriori error estimation for a new stabilized discontinuous Galerkin method, Appl. Math. Lett., 16 (2003), 447-452.[25] A.H. Schatz and J. Wang, Some new estimates for Ritz-Galerkin methods with minimal regularity assumptions, Math. Comp., 65 (1996), 19-27.[26] R. Schneider, Y. Xu and A. Zhou, An analysis of discontinuous Galerkin methods for elliptic problems, Adv. Comput. Math., 25 (2006), 259-286.[27] L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp., 54 (1994), 483-493.[28] S. Sun and M.F. Wheeler, L2(H1)-norm a posteriori error estimation for discontinuous Galerkin approximations of reactive transport problems, J. Sci. Comput., 22/23 (2005), 501-530.[29] S.K. Tomar and S.I. Repin, Efficient computable error bounds for discontinuous Galerkin pproximations of elliptic problems, J. Comput. Appl. Math., 226 (2009), 358-369.[30] R. Verf¨urth, A Review of A Posteriori Estimation and Adaptive Mesh-Refinement Techniques, Wiley-Teubner, New York, Stuttgart, 1996.[31] M.F. Wheeler, An elliptic collocation-finite element method with interior penalties, SIAM J. Numer. Anal., 15 (1978), 152-161.[32] B.I. Wohlmuth and R.H.W. Hoppe, A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas elements, Math. Comp., 68 (1999), 1347-1378.[33] J. Yang and Y. Chen, A unified a posteriori error analysis for discontinuous Galerkin approximations of reactive transport equations, J. Comput. Math., 24 (2006), 425-434. |
[1] | Ram Manohar, Rajen Kumar Sinha. ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR FULLY DISCRETE SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS [J]. Journal of Computational Mathematics, 2022, 40(2): 147-176. |
[2] | Yuping Zeng, Feng Wang, Zhifeng Weng, Hanzhang Hu. A POSTERIORI ERROR ESTIMATES FOR A MODIFIED WEAK GALERKIN FINITE ELEMENT APPROXIMATION OF SECOND ORDER ELLIPTIC PROBLEMS WITH DG NORM [J]. Journal of Computational Mathematics, 2021, 39(5): 755-776. |
[3] | Michael Holst, Yuwen Li, Adam Mihalik, Ryan Szypowski. CONVERGENCE AND OPTIMALITY OF ADAPTIVE MIXED METHODS FOR POISSON'S EQUATION IN THE FEEC FRAMEWORK [J]. Journal of Computational Mathematics, 2020, 38(5): 748-767. |
[4] | Gerard Awanou, Hengguang Li, Eric Malitz. A TWO-GRID METHOD FOR THE C0 INTERIOR PENALTY DISCRETIZATION OF THE MONGE-AMPERE EQUATION [J]. Journal of Computational Mathematics, 2020, 38(4): 547-564. |
[5] | Liang Ge, Ningning Yan, Lianhai Wang, Wenbin Liu, Danping Yang. HETEROGENEOUS MULTISCALE METHOD FOR OPTIMAL CONTROL PROBLEM GOVERNED BY ELLIPTIC EQUATIONS WITH HIGHLY OSCILLATORY COEFFICIENTS [J]. Journal of Computational Mathematics, 2018, 36(5): 644-660. |
[6] | Liang Ge, Tongjun Sun. A SPARSE GRID STOCHASTIC COLLOCATION AND FINITE VOLUME ELEMENT METHOD FOR CONSTRAINED OPTIMAL CONTROL PROBLEM GOVERNED BY RANDOM ELLIPTIC EQUATIONS [J]. Journal of Computational Mathematics, 2018, 36(2): 310-330. |
[7] | Ruihan Guo, Liangyue Ji, Yan Xu. HIGH ORDER LOCAL DISCONTINUOUS GALERKIN METHODS FOR THE ALLEN-CAHN EQUATION: ANALYSIS AND SIMULATION [J]. Journal of Computational Mathematics, 2016, 34(2): 135-158. |
[8] | Hongfei Fu, Hongxing Rui. A PRIORI ERROR ESTIMATES FOR LEAST-SQUARES MIXED FINITE ELEMENT APPROXIMATION OF ELLIPTIC OPTIMAL CONTROL PROBLEMS [J]. Journal of Computational Mathematics, 2015, 33(2): 113-127. |
[9] | Tianliang Hou, Yanping Chen. MIXED DISCONTINUOUS GALERKIN TIME-STEPPING METHOD FOR LINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS [J]. Journal of Computational Mathematics, 2015, 33(2): 158-178. |
[10] | C. Brennecke, A. Linke, C. Merdon, J. Schöberl. OPTIMAL AND PRESSURE-INDEPENDENT L2 VELOCITY ERROR ESTIMATES FOR A MODIFIED CROUZEIX-RAVIART STOKES ELEMENT WITH BDM RECONSTRUCTIONS [J]. Journal of Computational Mathematics, 2015, 33(2): 191-208. |
[11] | Yanzhen Chang, Danping Yang. A POSTERIORI ERROR ESTIMATE OF FINITE ELEMENT METHOD FOR THE OPTIMAL CONTROL WITH THE STATIONARY BÉNARD PROBLEM [J]. Journal of Computational Mathematics, 2013, 31(1): 68-87. |
[12] | Hongfei Fu, Hongxing Rui, Hui Guo. A CHARACTERISTIC FINITE ELEMENT METHOD FOR CONSTRAINED CONVECTION-DIFFUSION-REACTION OPTIMAL CONTROL PROBLEMS [J]. Journal of Computational Mathematics, 2013, 31(1): 88-106. |
[13] | Karl Kunisch, Wenbin Liu, Yanzhen Chang, Ningning Yan, Ruo Li. ADAPTIVE FINITE ELEMENT APPROXIMATION FOR A CLASS OF PARAMETER ESTIMATION PROBLEMS [J]. Journal of Computational Mathematics, 2010, 28(5): 645-675. |
[14] |
Tang Liu, Ningning Yan and Shuhua Zhang.
RICHARDSON EXTRAPOLATION AND DEFECT CORRECTION OF FINITE ELEMENT METHODS FOR OPTIMAL CONTROL PROBLEMS [J]. Journal of Computational Mathematics, 2010, 28(1): 55-71. |
[15] | R.H.W. Hoppe, J. Sch\. CONVERGENCE OF ADAPTIVE EDGE ELEMENT METHODS FOR THE 3D EDDY CURRENTS EQUATIONS [J]. Journal of Computational Mathematics, 2009, 27(5): 657-676. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||