Previous Articles    

A NEW NONMONOTONE TRUST REGION ALGORITHM FOR SOLVING UNCONSTRAINED OPTIMIZATION PROBLEMS

Jinghui Liu, Changfeng Ma   

  1. School of Mathematics and Computer Science, Fujian Normal University, Fuzhou 350007, China
  • Received:2011-12-14 Revised:2014-01-15 Online:2014-07-15 Published:2014-07-15
  • Supported by:

    This work has been partially supported by National Natural Science Foundation of China (11071041,11201074), Fujian Natural Science Foundation (2013J01006) and R&D of Key Instruments and Technologies for Deep Resources Prospecting (the National R&D Projects for Key Scientific Instruments) under grant number ZDYZ2012-1-02-04.

Jinghui Liu, Changfeng Ma. A NEW NONMONOTONE TRUST REGION ALGORITHM FOR SOLVING UNCONSTRAINED OPTIMIZATION PROBLEMS[J]. Journal of Computational Mathematics, 2014, 32(4): 476-490.

Based on the nonmonotone line search technique proposed by Gu and Mo (Appl. Math. Comput. 55, (2008) pp. 2158-2172), a new nonmonotone trust region algorithm is proposed for solving unconstrained optimization problems in this paper. The new algorithm is developed by resetting the ratio ρk for evaluating the trial step dk whenever acceptable. The global and superlinear convergence of the algorithm are proved under suitable conditions. Numerical results show that the new algorithm is effective for solving unconstrained optimization problems.

CLC Number: 

[1] M.J.D. Powell, Convergence properties of a class minimization algorithms, in: O.L.Mangasarian, R.R.Meyer, S.M.Robubsib (Eds.), Nonlinear programming, vol. 2, Academic Press, New York, (1975), 1-25.

[2] J. Nocedal, Y. Yuan, Combining trust region and line search techniques, in: Y.Yuan (Ed), Advandances in Nonlinear Programming, Kluwer Academic Publishers, Dordrecht, (1996), 153-175.

[3] E.M. Gertz, Combination trust-region line search methods for unconstrained optimization, University of California, San Diego, 1999.

[4] N.Y. Deng, Y. Xiao, F.J. Zhou, Nonmonotic trust region algorithm, J. Optim Theory Appl., 76:2 (1993), 259-285.

[5] L. Grippo, F. Lampariello, S. Lucidi, A nonmonotone line search technique for Newton’s method, SIAM J. Numer. Anal., 23:4 (1986), 707-716.

[6] N.Z. Gu, J.T. Mo, Incorporating nonmonotone strategies into the trust region method for unconstrained optimization, Appl. Math. Comput., 55 (2008), 2158-2172.

[7] W.Y. Sun, J.Y. Han, J. Sun, On the global convergence of nonmonotone descent methods, J. Comput. Appl. Math., 146 (2002), 89-98.

[8] Y.H. Dai, A nonmonotone conjugate gradient algorithm for unconstrained optimization, J. Systems Sci. Complex, 15:2 (2002), 139-145.

[9] Y.H. Dai, On the nonmonotone line search, J. Optim. Theory Appl., 112 (2002), 315-330.

[10] L. Grippo, M. Sciandrone, Nonmonotone globalization techniques for the Barzilai-Borwein gradient method, Comput. Optom. Appl., 23 (2002), 143-169.

[11] Changfeng Ma, Xiaohong Chen, The convergence of a one-step smoothing Newton method for P0-NCP based on a new smoothing NCP-function, Journal of Computational and Applied Mathematics, 216 (2008), 1-13.

[12] Changfeng Ma, Lihua Jiang, Some research on Levenberg-Marquardt method for the nonlinear equations, Applied Mathematics and Computation, 184 (2007), 1032-1040.

[13] Changfeng Ma, Lihua Jiang and Desheng Wang, The convergence of a smoothing damped Gauss- Newton method for nonlinear complementarity problem, Nonlinear Analysis: Real World Applications, 10(2009), 2072-2087.

[14] G. Liu, J. Han, D. Sun, Global convergence of BFGS algorithm with nonmonotone linesearch, Optimization, 34 (1995), 147-159.

[15] J.T. Mo, C.Y. Liu, S.C. Yan, A nonmonotone trust region method based on nonincreasing technique of weighted average of the successive function values, J. Comput. Appl. Math., 209 (2007), 97-108.

[16] W.Y. Sun. Nonmonotone trust region method for solving optimization problems, Appl. Math. Comput., 156:1 (2004), 159-174.

[17] L. Toint, An assessment of non-monotone line search techniques for unconstrained optimization, SIAM J. Sci. Statist. Comput., 17:3 (1996), 725-739.

[18] H. Zhang, W.W. Hager, A nonmonotone line search technique and its application to unconstrained optimization, SIAM J. Optim., 14:4 (2004), 1043-1056.

[19] J. Fu,W. Sun, Nonmotone adaptive trust region method for unconstrained optimization problems, Appl. Math. Comput., 163:1 (2005), 489-504.

[20] X. Ke, J. Han, A class of nonmotone trust region algorithms for unconstrained optimization, Sci. China Ser. A, 41:9 (1998), 927-932.

[21] M. Ahookhosh, K. Amini, A nonmotone trust region method with adaptive radius for unconstrained optimization, Comput. Math. Appl., 60 (2010), 411-422.

[22] J.J. More, B.S. Garbow, K.E. Hillstrome, Testing unconstrained optimization software, ACM Trans. Math. Software, 7:1 (1981), 17-41.

[23] D. Touati-Ahmed, C. Storey, Efficient hybrid conjugate gradient techniques, J. Optim. Theory Appl., 64:2 (1990), 379-397.
[1] Xiaoyu Wang, Ya-xiang Yuan. STOCHASTIC TRUST-REGION METHODS WITH TRUST-REGION RADIUS DEPENDING ON PROBABILISTIC MODELS [J]. Journal of Computational Mathematics, 2022, 40(2): 294-334.
[2] Yuting Chen, Mingyuan Cao, Yueting Yang, Qingdao Huang. AN ADAPTIVE TRUST-REGION METHOD FOR GENERALIZED EIGENVALUES OF SYMMETRIC TENSORS [J]. Journal of Computational Mathematics, 2021, 39(3): 358-374.
[3] Keke Zhang, Hongwei Liu, Zexian Liu. A NEW ADAPTIVE SUBSPACE MINIMIZATION THREE-TERM CONJUGATE GRADIENT ALGORITHM FOR UNCONSTRAINED OPTIMIZATION [J]. Journal of Computational Mathematics, 2021, 39(2): 159-177.
[4] Wenjuan Xue, Weiai Liu. A MULTIDIMENSIONAL FILTER SQP ALGORITHM FOR NONLINEAR PROGRAMMING [J]. Journal of Computational Mathematics, 2020, 38(5): 683-704.
[5] Bothina El-Sobky, Abdallah Abotahoun. A TRUST-REGION ALGORITHM FOR SOLVING MINI-MAX PROBLEM [J]. Journal of Computational Mathematics, 2018, 36(6): 776-791.
[6] Yunfeng Cai, Zhaojun Bai, John E. Pask, N. Sukumar. CONVERGENCE ANALYSIS OF A LOCALLY ACCELERATED PRECONDITIONED STEEPEST DESCENT METHOD FOR HERMITIAN-DEFINITE GENERALIZED EIGENVALUE PROBLEMS [J]. Journal of Computational Mathematics, 2018, 36(5): 739-760.
[7] Caixia Kou, Zhongwen Chen, Yuhong Dai, Haifei Han. AN AUGMENTED LAGRANGIAN TRUST REGION METHOD WITH A BI-OBJECT STRATEGY [J]. Journal of Computational Mathematics, 2018, 36(3): 331-350.
[8] Fan Jiang, Deren Han, Xiaofei Zhang. A TRUST-REGION-BASED ALTERNATING LEAST-SQUARES ALGORITHM FOR TENSOR DECOMPOSITIONS [J]. Journal of Computational Mathematics, 2018, 36(3): 351-373.
[9] Yangyang Xu. FAST ALGORITHMS FOR HIGHER-ORDER SINGULAR VALUE DECOMPOSITION FROM INCOMPLETE DATA [J]. Journal of Computational Mathematics, 2017, 35(4): 397-422.
[10] Jinyan Fan, Jianyu Pan, Hongyan Song. A RETROSPECTIVE TRUST REGION ALGORITHM WITH TRUST REGION CONVERGING TO ZERO [J]. Journal of Computational Mathematics, 2016, 34(4): 421-436.
[11] Jinkui Liu, Shengjie Li. SPECTRAL DY-TYPE PROJECTION METHOD FOR NONLINEAR MONOTONE SYSTEM OF EQUATIONS [J]. Journal of Computational Mathematics, 2015, 33(4): 341-355.
[12] Fusheng Wang, Chuanlong Wang, Li Wang. A NEW TRUST-REGION ALGORITHM FOR FINITE MINIMAX PROBLEM [J]. Journal of Computational Mathematics, 2012, 30(3): 262-278.
[13] Xuebin Wang, Changfeng Ma, Meiyan Li. A SMOOTHING TRUST REGION METHOD FOR NCPS BASED ON THE SMOOTHING GENERALIZED FISCHER-BURMEISTER FUNCTION [J]. Journal of Computational Mathematics, 2011, 29(3): 261-286.
[14] Duoquan Li. A NEW SQP-FILTER METHOD FOR SOLVING NONLINEAR PROGRAMMING PROBLEMS [J]. Journal of Computational Mathematics, 2006, 24(5): 609-634.
[15] Chang-yin Zhou,Guo-ping He,Yong-li Wang . A NEW CONSTRAINTS IDENTIFICATION TECHNIQUE-BASED QP-FREE ALGORITHM FOR THE SOLUTION OF INEQUALITY CONSTRAINED MINIMIZATION PROBLEMS [J]. Journal of Computational Mathematics, 2006, 24(5): 591-608.
Viewed
Full text


Abstract