Previous Articles Next Articles
Yanzhen Chang1, Danping Yang2
[1] F. Abergel and F. Casas, Some optimal control problems of multistate equations appearing in fluid mechanics, Math. Model. Numer. Anal., 27 (1993), 223-247.[2] G. Alekseev, Solvability of stationary boundary control problems for heat convection equations, Sib. Math. J., 39 (1998), 844-858.[3] N. Arada, E. Casas and F. Tröltzsch, Error estimates for the Numerical Approximation of a semilinear elliptic optimal control problem, Comput. Optim. Appl., 23 (2002), 201-229.[4] F. Brezzi, J. Rappaz and P. Raviart, Finite-dimensional approximation of nonlinear problem. Part I: branches of nonsingular solutions, Numer. Math., 36 (1980), 1-25.[5] E. Casas, Error estimates for the numerical approximation of semilinear elliptic control problems with finitely many state constraints, ESAIM Control, Optim. Cal. Var., 8 (2002), 345-374.[6] E. Casas and F. Tröltzsch, Second order necessary and sufficient optimality conditions for optimization problems and applications to control theory, SIAM J. Optim., 13 (2002), 406-431.[7] E. Casas, F. Tröltzsch and A. Unger, Second order sufficient optimality conditions for some state constrained control problems of semilinear elliptic equations, SIAM J. Control Optim., 38 (2000), 1369-1391.[8] Y. Chang and D. Yang, Superconvergence analysis of finite element methods for optimal control problems of the stationary B′enard type, J. Comp. Math., 26 (2008), 660-676.[9] C. Cuvelier, Optimal Control of a System Governed by the Navier-Stokes Equations Coupled with the Heat equations, New Developments in Differential Equations (W. Eckhaus, ed.), Amsterdam: North-Holland, 1976.[10] V. Girault and P. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, Springer-Verlag, Berlin, 1986.[11] M. Gunzburger, L. Hou and T. Svobodny, Heating and cooling control of temperature distributions along boundaries of flow domains, J. Math. Syst. Estim. Control., 13 (1993), 147-172.[12] M. Gunzburger and H. Lee, Analysis, approximation, and computation of a coupled solid/fluid temprature control problem, Comput. Methods Appl. Mech. Eng., 118 (1994), 133-152.[13] A. Kufner, O. John and S. Fucik, Function spaces, Nordhoff, Leyden, The Netherlands, 1977.[14] K. Kunusich, W. Liu, Y. Chang and N. Yan, R. Li, Adaptive finite element approximation for a class of parameter estimation problems. J. Comp. Math., 28 (2010), 645-675.[15] H. Lee, Analysis of optimal control problems for the 2-D stationary Boussinesq equations, J. Math. Anal. Appl., 242 (2000), 191-211.[16] H. Lee, Optimal control problems for the two dimensional Rayleigh-B′enard type convection by a gradient method, Japan. J. Indust. Appl. Math., 26 (2009), 93-121.[17] H. Lee, Analysis and computations of Neumann boundary optimal control problems for the stationary Boussinesq equations, Proceedings of the 40th IEEE Conference on Decision and Control, Orlando, Florida USA, Dec., 2001.[18] J. Lions, Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.[19] W. Liu and N. Yan, A posteriori error estimates for control problems governed by nonlinear elliptic equations, Appl. Numer. Math., 47 (2003), 173-187.[20] P. Raviart and J. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical Aspects of the Finite Element Method, Lecture Notes in Mathematics, Springer-Verlag, New York, 606 (1977), 292-315.[21] D. Yang and L. Wang, Two finite element schemes for steady convective heat transfer with system rotation and variable thermal properties, Numer. Heat Trans. B, 47 (2005), 343-360.[22] K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems I: a linear model problem, SIAM J. Numer. Anal., 28 (1991), 43-77.[23] R. Becker, H. Kapp and R. Rannacher, Adaptive finite element methods for optimal control of partial differential equations: basic concept, SIAM J. Control Optim., 39 (2000), 113-132.[24] R. Verfürth, A posteriori error estimates for nonlinear problems, Math. Comp., 62 (1994), 445-475.[25] R. Verfürth, A Review of Posteriori Error Estimation and Adaptive Mesh Refinement Techniques, Wiley-Teubner, New York, 1996.[26] R. Li, W. Liu, H. Ma and T. Tang, Adaptive finite elememt approximation of elliptic optimal control, SIAM J. Control Optim., 41 (2002), 1321-1349.[27] L. Scott and S. Zhang, Finite element interpolation of nonsmooth functions stisfying boundary conditions, Math. Comp., 54 (1990), 483-493. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||