• Original Articles • Previous Articles Next Articles
Liping Zhang1, Liqun Qi2, Yi Xu2
Liping Zhang, Liqun Qi, Yi Xu. LINEAR CONVERGENCE OF THE LZI ALGORITHM FOR WEAKLY POSITIVE TENSORS[J]. Journal of Computational Mathematics, 2012, 30(1): 24-33.
[1] S.R. Bulo and M. Pelillo, New bounds on the clique number of graphs based on spectral hypergraph theory, in: T. Stützle ed., Learning and Intelligent Optimization, Springer Verlag, Berlin, (2009), 45-48.[2] K.C. Chang, K. Pearson and T. Zhang, Perron Frobenius Theorem for nonnegative tensors, Commu. Math. Sci., 6 (2008), 507-520.[3] K.C. Chang, K. Pearson and T. Zhang, On eigenvalue problems of real symmetric tensors, J. Math. Anal. Appl., 350(2009), 416-422.[4] K.C. Chang, K. Pearson and T. Zhang, Primitivity, the convergence of the NZQ method, and the largest eigenvalue for nonnegative tensors, SIAM J. Matrix Anal. A., 32 (2011), 806-819.[5] S. Friedland, S. Gaubert and L. Han, Perron-Frobenius theorem for nonnegative multilinear forms and extensions, to appear in: Linear Algebra Appl.[6] C. Hillar and L.-H. Lim, Most tensor problems are NP hard, arXiv:0911.1393, 10 Nov 2009.[7] L.-H. Lim, Singular values and eigenvalues of tensors: a variational approach, in Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Addaptive Processing (CAMSAP’05), Vol. 1, IEEE Computer Society Press, Piscataway, NJ, 2005, 129-132.[8] C. Ling, J. Nie, L. Qi and Y. Ye, Bi-quadratic optimization over unit spheres and semidefinite programming relaxations, SIAM J. Optimiz., 20 (2009), 1286-1310.[9] Y. Liu, G. Zhou and N.F. Ibrahim, An always convergent algorithm for the largest eigenvalue of an irreducible nonnegative tensor, J. Comput. Appl. Math., 235 (2010), 286-292.[10] M. Ng, L. Qi and G. Zhou, Finding the largest eigenvalue of a nonnegative tensor, SIAM J. Matrix Anal. A., 31 (2009), 1090-1099.[11] K. Pearson, Essentially Positive Tensors, International Journal of Algebra, 4 (2010), 421-427.[12] L. Qi, Eigenvalues of a real supersymmetric tensor,J. Symb. Comput., 40 (2005), 1302-1324.[13] L. Qi, Eigenvalues and invariants of tensor, J. Math. Anal. Appl., 325 (2007), 1363-1377.[14] L. Qi, W. Sun and Y. Wang, Numerical multilinear algebra and its applications, Frontiers Math. China, 2 (2007), 501-526.[15] L. Qi, Y. Wang and E.X. Wu, D-eigenvalues of diffusion kurtosis tensor, J. Comput. Appl. Math., 221 (2008), 150-157.[16] C. Van Loan, Future dirctions in tensor-based computation and modeling, Workshop Report in Arlington, Virginia at National Science Foundation, February 20-21, 2009. http://www.cs.cornell.edu/cv/TenWork/Home.htm.[17] Y.N. Yang and Q.Z. Yang, Further results for Perron-Frobenius Theorem for nonnegative tensors, SIAM J. Matrix Anal. A., 31 (2010), 2517-2530. |
[1] | Ernest K. Ryu, Wotao Yin. PROXIMAL-PROXIMAL-GRADIENT METHOD [J]. Journal of Computational Mathematics, 2019, 37(6): 778-812. |
[2] | Yunfeng Cai, Zhaojun Bai, John E. Pask, N. Sukumar. CONVERGENCE ANALYSIS OF A LOCALLY ACCELERATED PRECONDITIONED STEEPEST DESCENT METHOD FOR HERMITIAN-DEFINITE GENERALIZED EIGENVALUE PROBLEMS [J]. Journal of Computational Mathematics, 2018, 36(5): 739-760. |
[3] | Cong D. Dang, Guanghui Lan, Zaiwen Wen. LINEARLY CONVERGENT FIRST-ORDER ALGORITHMS FOR SEMIDEFINITE PROGRAMMING [J]. Journal of Computational Mathematics, 2017, 35(4): 452-468. |
[4] | Jinyan Fan, Jianyu Pan, Hongyan Song. A RETROSPECTIVE TRUST REGION ALGORITHM WITH TRUST REGION CONVERGING TO ZERO [J]. Journal of Computational Mathematics, 2016, 34(4): 421-436. |
[5] | Jinghui Liu, Changfeng Ma. A NEW NONMONOTONE TRUST REGION ALGORITHM FOR SOLVING UNCONSTRAINED OPTIMIZATION PROBLEMS [J]. Journal of Computational Mathematics, 2014, 32(4): 476-490. |
[6] | Fusheng Wang, Chuanlong Wang, Li Wang. A NEW TRUST-REGION ALGORITHM FOR FINITE MINIMAX PROBLEM [J]. Journal of Computational Mathematics, 2012, 30(3): 262-278. |
[7] | Xuebin Wang, Changfeng Ma, Meiyan Li. A SMOOTHING TRUST REGION METHOD FOR NCPS BASED ON THE SMOOTHING GENERALIZED FISCHER-BURMEISTER FUNCTION [J]. Journal of Computational Mathematics, 2011, 29(3): 261-286. |
[8] | Chang-yin Zhou,Guo-ping He,Yong-li Wang . A NEW CONSTRAINTS IDENTIFICATION TECHNIQUE-BASED QP-FREE ALGORITHM FOR THE SOLUTION OF INEQUALITY CONSTRAINED MINIMIZATION PROBLEMS [J]. Journal of Computational Mathematics, 2006, 24(5): 591-608. |
[9] | Cheng-xian Xu, Yue-ting Yang. Convergence Properties of Multi-directional Parallel Algorithms for Unconstrained Minimization [J]. Journal of Computational Mathematics, 2005, 23(4): 357-372. |
[10] | Xin-long Luo. Singly Diagonally Implicit Runge-Kutta Methods Combining Line Search Techniques for Unconstrained Optimization [J]. Journal of Computational Mathematics, 2005, 23(2): 153-164. |
[11] | Wei Wang, Lian-sheng Zhang, Yi-fan Xu . A Revised Conjugate Gradient Projection Algorithm for Inequality Constrained Optimizations [J]. Journal of Computational Mathematics, 2005, 23(2): 217-224. |
[12] | Ju Liang ZHANG, Jian CHEN. A SMOOTHING LEVENBERG-MARQUARDT TYPE METHOD FOR LCP [J]. Journal of Computational Mathematics, 2004, 22(5): 735-752. |
[13] | Ju Liang ZHANG, Jian CHEN,Xin Jian ZHUO. A CONSTRAINED OPTIMIZATION APPROACH FOR LCP [J]. Journal of Computational Mathematics, 2004, 22(4): 509-522. |
[14] | De Ren HAN. A TRULY GLOBALLY CONVERGENT FEASIBLE NEWTON-TYPE METHOD FOR MIXED COMPLEMENTARITY PROBLEMS [J]. Journal of Computational Mathematics, 2004, 22(3): 347-360. |
[15] | Chang Feng MA,Pu Yan NIE,Guo Ping LIANG. A NEW SMOOTHING EQUATIONS QPPROACH TO THE NONLINEAR COMPLEMENTARITY PROBLEMS$^*1$ [J]. Journal of Computational Mathematics, 2003, 21(6): 747-758. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||