• Original Articles • Previous Articles
Hua Dai1, Zhong-Zhi Bai2
Hua Dai, Zhong-Zhi Bai. ON EIGENVALUE BOUNDS AND ITERATION METHODS FOR DISCRETE ALGEBRAIC RICCATI EQUATIONS[J]. Journal of Computational Mathematics, 2011, 29(3): 341-366.
[1] B.D.O. Anderson, Second-order convergent algorithms for the steady-state Riccati equation,Intern. J. Control, 28 (1978), 295-306.[2] B.D.O. Anderson and J.B. Moore, Optimal Filtering, Prentice-Hall, Englewood Cliffs, New Jersey,1979.[3] W.F. Arnold III and A.J. Laub, Generalized eigenproblem algorithms and software for algebraicRiccati equations, Proc. IEEE, 72 (1984), 1746-1754.[4] A.Y. Barraud, A numerical algorithm to solve ATXA-X = Q, IEEE Trans. Automat. Control,AC-22 (1977), 883-885.[5] P. Benner, A.J. Laub and V. Mehrmann, A Collection of Benchmark Examples for the NumericalSolution of Algebraic Riccati Equations II: Discrete-Time Case, Technical Report SPC 95-23,Faculty of Mathematics, TU Chemnitz-Zwickau, D-09107 Chemnitz, December 1995.[6] P. Benner, V. Mehrmann and H.-G. Xu, A numerically stable, structure preserving method forcomputing the eigenvalues of real Hamiltonian or symplectic pencils, Numer. Math., 78 (1998),329-358.[7] H. Dai, The Theory of Matrices, Science Press, Beijing, 2001.[8] R. Davies, P. Shi and R. Wiltshire, New upper solution bounds of the discrete algebraic Riccatimatrix equation, J. Comput. Appl. Math., 213 (2008), 307-315.[9] J. Garloff, Bounds for the eigenvalues of the solution of the discrete Riccati and Lyapunovequations and the continuous Lyapunov equation, Intern. J. Control, 43 (1986), 423-431.[10] G.H. Golub and C.F. Van Loan, Matrix Computations, 3rd Edition, The Johns Hopkins UniversityPress, Baltimore and London, MD, 1996.[11] C.-H. Guo, Newton's method for discrete algebraic Riccati equations when the closed-loop matrixhas eigenvalues on the unit circle, SIAM J. Matrix Anal. Appl., 20 (1998), 279-294.[12] T.-M. Hwang, E.K.-W. Chu and W.-W. Lin, A generalized structure-preserving doubling algo-rithm for generalized discrete-time algebraic Riccati equations, Intern. J. Control, 78 (2005),1063-1075.[13] S.W. Kim, P. Park and W.H. Kwon, Lower bounds for the trace of the solution of the discretealgebraic Riccati equation, IEEE Trans. Automat. Control, 38 (1993), 312-314.[14] M. Kimura, Convergence of the doubling algorithm for the discrete-time algebraic Riccati equation,Intern. J. Systems Sci., 19 (1988), 701-711.[15] G. Kitagawa, An algorithm for solving the matrix equation X = FXFT + S, Intern. J. Control,25 (1977), 745-753.[16] N. Komaroff, Upper bounds for the eigenvalues of the solution of the Lyapunov matrix equation,IEEE Trans. Automat. Control, 35 (1990), 737-739.[17] N. Komaroff, Upper bounds for the solution of the discrete Riccati equation, IEEE Trans.Automat. Control, 37 (1992), 1370-1372.[18] N. Komaroff, Iterative matrix bounds and computational solutions to the discrete algebraic Riccatiequation, IEEE Trans. Automat. Control, 39 (1994), 1676-1678.[19] N. Komaroff and B. Shahian, Lower summation bounds for the discrete Riccati and Lyapunovequations, IEEE Trans. Automat. Control, 37 (1992), 1078-1080.[20] V.S. Kouikoglou and Y.A. Phillis, Trace bounds on the covariances of continuous-time systemswith multiplicative noise, IEEE Trans. Automat. Control, 38 (1993), 138-142.[21] H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, John Wiley & Sons, New York,1972.[22] B.H. Kwon, M.J. Youn and Z. Bien, On bounds of the Riccati and Lyapunov matrix equations,IEEE Trans. Automat. Control, AC-30 (1985), 1134-1135.[23] W.H. Kwon, Y.S. Moon and S.C. Ahn, Bounds in algebraic Riccati and Lyapunov equations: asurvey and some new results, Intern. J. Control, 64 (1996), 377-389.[24] P. Lancaster and L. Rodman, Algebraic Riccati Equations, The Clarendon Press, Oxford andNew York, 1995.[25] A.J. Laub, A Schur method for solving algebraic Riccati equations, IEEE Trans. Automat.Control, AC-24 (1979), 913-921.[26] C.-H. Lee, On the matrix bounds for the solution matrix of the discrete algebraic Riccati equation,IEEE Trans. Circuits Systems-I: Fundamental Theory Appl., 43 (1996), 402-407.[27] C.-H. Lee, Upper matrix bound of the solution for the discrete Riccati equation, IEEE Trans.Automat. Control, 42 (1997), 840-842.[28] C.-H. Lee, Upper and lower bounds of the solutions of the discrete algebraic Riccati and Lyapunovmatrix equations, Intern. J. Control, 68 (1997), 579-598.[29] C.-H. Lee, Simple stabilizability criteria and memoryless state feedback control design for time-delay systems with time-varying perturbations, IEEE Trans. Circuits Systems-I: FundamentalTheory Appl., 45 (1998), 1211-1215.[30] C.-H. Lee, Matrix bounds of the solutions of the continuous and discrete Riccati equations-aunified approach, Intern. J. Control, 76 (2003), 635-642.[31] W.-W. Lin and C.-S. Wang, On computing stable Lagrangian subspaces of Hamiltonian matricesand symplectic pencils, SIAM J. Matrix Anal. Appl., 18 (1997), 590-614.[32] W.-W. Lin and S.-F. Xu, Convergence analysis of structure-preserving doubling algorithms forRiccati-type matrix equations, SIAM J. Matrix Anal. Appl., 28 (2006), 26-39.[33] L.-Z. Lu and W.-W. Lin, An iterative algorithm for the solution of the discrete-time algebraicRiccati equation, Linear Algebra Appl., 188/189 (1993), 465-488.[34] L.-Z. Lu, W.-W. Lin, and C.E.M. Pearce, An efficient algorithm for the discrete-time algebraicRiccati equation, IEEE Trans. Automat. Control, 44 (1999), 1216-1220.[35] A.W. Marshall and I. Olkin, Inequalities: Theory of Majorization and Its Applications, AcademicPress, New York and London, 1979.[36] V. Mehrmann, The Autonomous Linear Quadratic Control Problem: Theory and NumericalSolution, in Lecture Notes in Control and Information Sciences 163, Springer-Verlag, Berlin,1991.[37] T. Mori and I.A. Derese, A brief summary of the bounds on the solution of the algebraic matrixequations in control theory, Intern. J. Control, 39 (1984), 247-256.[38] T. Mori, N. Fukuma and M. Kuwahara, On the discrete Riccati equation, IEEE Trans. Automat.Control, AC-32 (1987), 828-829.[39] J.M. Ortega and W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables,SIAM, Philadelphia, PA, 2000.[40] T. Pappas, A.J. Laub and N.R. Sandell, On the numerical solution of the discrete-time algebraicRiccati equation, IEEE Trans. Automat. Control, AC-25 (1980), 631-641.[41] G. Schulz, Iterative berechnung der reziproken matrix, Z. Angew. Math. Mech., 13 (1933), 57-59.[42] M.T. Tran and M.E. Sawan, On the discrete Riccati matrix equation, SIAM J. Alg. Disc. Meth.,6 (1985), 107-108.[43] S.-S. Wang, B.-S. Chen and T.-P. Lin, Robust stability of uncertain time-delay systems, Intern.J. Control, 46 (1987), 963-976.[44] W.M. Wonham, Linear Multivariable Control: A Geometric Approach, 2nd Edition, Springer-Verlag, New York and Berlin, 1979.[45] K. Yasuda and K. Hirai, Upper and lower bounds on the solution of the algebraic Riccati equation,IEEE Trans. Automat. Control, AC-24 (1979), 483-487.[46] X.-Z. Zhan, Computing the extremal positive definite solutions of a matrix equation, SIAM J.Sci. Comput., 17 (1996), 1167-1174. |
[1] | Zhi-Ru Ren. BANDED TOEPLITZ PRECONDITIONERS FOR TOEPLITZMATRICES FROM SINC METHODS [J]. Journal of Computational Mathematics, 2012, 30(5): 533-543. |
[2] | Caifang Wang, Tie Zhou. LOCAL CONVERGENCE OF AN EM-LIKE IMAGE RECONSTRUCTION METHOD FOR DIFFUSE OPTICAL TOMOGRAPHY [J]. Journal of Computational Mathematics, 2011, 29(1): 61-73. |
[3] | Zhong Zhi BAI,YU Guang HUANG. A CLASS OF ASYNCHRONOUS PARALLEL MULTISPLITTING RELAXATION METHODS FOR LARGE SPARSE LINEAR COMPLEMENTARITY PROBLEMS$^*1$ [J]. Journal of Computational Mathematics, 2003, 21(6): 773-790. |
[4] | Zhong-zhi Bai,Tin-zhu Huang. ON THE CONVERGENCE OF THE RELAXATION METHODS FOR POSITIVE DEFINITELINEAR SYSTEMS [J]. Journal of Computational Mathematics, 1998, 16(6): 527-538. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||