• 论文 •

### 求解无限板圆孔边四不等长裂纹应力强度因子问题

1. 内蒙古师范大学数学科学学院, 呼和浩特 010022
• 收稿日期:2019-05-13 出版日期:2020-09-15 发布日期:2020-09-15
• 基金资助:

国家自然科学基金项目（批准号：11462020，11962026）、内蒙古自然科学基金项目（批准号：2017MS0104，2017MS0124，2017MS0125）、内蒙古自治区研究生教育创新计划资助项目（S2018111965Z）、内蒙古师范大学研究生科研创新基金项目（CXJJS18069）.

Liu Yuan, Wang Guixia, Li Lianhe, Zhou Jianmin. THE PROBLEM FOR THE INFINITE PLATE WITH FOUR ASYMMETRY CRACKS EMANATING FROM A CIRCULAR HOLE[J]. Journal of Numerical Methods and Computer Applications, 2020, 41(3): 192-200.

### THE PROBLEM FOR THE INFINITE PLATE WITH FOUR ASYMMETRY CRACKS EMANATING FROM A CIRCULAR HOLE

Liu Yuan, Wang Guixia, Li Lianhe, Zhou Jianmin

1. College of Mathematics Science, Inner Mongolia Normal University, Huhhot 010022, China
• Received:2019-05-13 Online:2020-09-15 Published:2020-09-15

The complex variable function method and the truncated conformal mapping approach are common methods for solving the problem of cracks emanating from a hole. The complex function method is an analytical method, and the truncated conformal mapping approach is a semi-analytical and semi-numerical method. The two methods need to introduce conformal mapping. A mapping function that turns a problem into a model that can be solved. In this paper, the complex variable function method and the truncated conformal mapping approach are used to solve the stress intensity factors for the infinite plate with four cracks emanating from a circular hole, which is under remote uniform tension in the bidirectional at an arbitrary angle. The results show that when the horizontal crack is symmetrical and the ratio of crack length to radius is greater than 1, the results of the complex variable function and the truncated conformal mapping approach have good approaching effect. When the horizontal crack is asymmetrical and the ratio of crack length to radius is greater than 1.5, the results obtained by the above two methods are consistent. When the vertical crack length is equal to zero,The results of the complex variable function are consistent with the existing results in the literature.

MR(2010)主题分类:

()
 [1] 闫相桥. 双轴载荷作用下源于椭圆孔的分支裂纹的一种边界元分析[J]. 固体力学学报, 2004, 25(4):430-434.[2] 王永健. 压电弹性体孔边裂纹问题研究[D]. 南京:南京航空航天大学, 2012.[3] Yan X Q. A numerical analysis of cracks emanating from an elliptical hole in a 2-D elasticity plate[J]. European Journal of Mechanics-A/Solids, 2006, 25(1):142-153.[4] 李联和, 刘官厅. 准晶断裂力学的复变函数方法[M]. 北京:科学出版社, 2013.[5] 刘明尧. 裂纹尖端应力强度因子的有限元计算方法分析[J]. 武汉理工大学学报, 2011, 33(6):116-121.[6] 陈柱. 断裂力学中具有多条裂纹的圆形孔口问题的解析研究[D]. 内蒙古师范大学, 2008.8.[7] 赵晓辰, 吴学仁, 童第华. 无限板孔边裂纹问题的高精度解析权函数解[J]. 航空学报, 2018, 39(9):221976-221987.[8] 李爱民, 崔海涛, 温卫东. Ⅰ-Ⅱ复合型多裂纹板的应力强度因子分析[J]. 机械科学与技术,2015, 34(5):803-807.[9] Bowie O L. Analysis of an infinite plate containing radial cracks originating at the boundaries of an internal circular hole[J]. Journal of Mathematics and Physics, 1956, 35(1):60-71.[10] Hsu Y C. The infinite sheet with two radial cracks from cylindrical hole under inclined tension or in-plate shear[J]. International Journal of Fracture, 1977, 13(6):839-845.[11] Newman J C, Jr. An improved method of collocation for the stress analysis of cracked plates with various shaped boundaries[R]. NASA TN D6376, 1971.[12] 郭俊宏, 刘官厅. 具有不对称共线裂纹的圆形孔口问题的应力分析[J]. 内蒙古师范大学学报, 2007, 36(4):418-422.[13] 郭俊宏. 复变方法在经典弹性复杂缺陷及准晶材料中的应用[D]. 内蒙古师范大学,2008.[14] 祝青钰, 韩峰, 隋明丽. 无限大板孔边双裂纹应力强度因子和裂纹面张开位移[J]. 航空学报, 2016, 37(3):883-893.[15] 郭俊宏. 多场耦合材料断裂力学[M]. 北京:中国科学出版社, 2015.[16] Muskhelishvili N I. Some basic problems of mathematical theory of elasticity[M]. Gorningen, Holland:Noordhoff International Publishing, 1953, 148-162.[17] 范天佑. 断裂理论基础[M]. 北京:科学出版社,2003.
 No related articles found!