• 论文 •

### 有理插值的广义QD算法

1. 中国科学院计算中心
• 出版日期:1988-02-20 发布日期:1988-02-20

### A GENERALIZATION OF THE QD ALGORITHM FOR RATIONAL HERMITE INTERPOLATION

1. Xu Guo-liang Computing Center, Academia Sinica
• Online:1988-02-20 Published:1988-02-20

In this paper a generalization of Rutishauer's QD algorithm for Pade approximation tothat for rational Hermite interpolation is given. A generalized QD table is thus obtained. Onits basis, we establish various three-term recurrence formulas for the elements of the cationalHermite interpolation table and continued fraction expressions for those on different "paths".As its application, we also discuss the computation of zeros or poles for meromorphic func-tions.
()
 [1] JR. G. A. Baker, Essentials of Pade-Approximants, Academic Press., New York. San Francisco London.1975． [2] G. Claessens, The rational Hermite interpolation problem and some related recurrence formulas, Comp. MothAppls., 2(1976) , 117-123． [3] G. Claessens, A generalization of the QD algorithm. J.Comp. Appl. Math., 7: 4(1981) , 237--247． [4] G. Claessens, Wuytack, L., Application of the generalized QD-algorithm. lSNM 59, Numerical Methods of Approximation Theory, 6(198 1) , 244--265． [5] P. R. Graves-Morris, A generalized QD algorithm, J.Comp. Appl. Math., 6: 3(1980) , 247--249． [6] H. Rutishauser, Der Quotienten-differenzen Algorithimus, Z. A. M. P., 5(1954) , 233--251． [7] L. Wuytack, On the osculatory interpolation problem, Math. Comput., 29(1975) , 837--843． [8] H. Wallin, Potential theory and approximation of analytic functions by rational interpolation, Lecture Notep in Mathematics 747 in Proc. Coll. Complex Anal., Joensun, Finland, 1978, 434---450． [9] G. L. Xu, J. K. Li, The Solubility of rational Hermite interpolation problem, J. Comp. Math., 3: 3(1985) .238-251． [10] 徐国良,有理插值的若干问题,博士毕业论文,中国科学院计算中心,1984．
 No related articles found!