• 论文 • 上一篇
徐黎闽1, 杨真2, 方俊3, 高兴誉3, 宋海峰3
徐黎闽, 杨真, 方俊, 高兴誉, 宋海峰. 固溶合金第一性原理计算方法初探[J]. 数值计算与计算机应用, 2021, 42(1): 18-32.
Xu Limin, Yang Zhen, Fang Jun, Gao Xingyu, Song Haifeng. A PRIMARY STUDY ON THE FIRST-PRINCIPLES CALCULATION METHOD FOR SOLID SOLUTION ALLOY[J]. Journal on Numerica Methods and Computer Applications, 2021, 42(1): 18-32.
Xu Limin1, Yang Zhen2, Fang Jun3, Gao Xingyu3, Song Haifeng3
MR(2010)主题分类:
分享此文:
[1] Lifshits I M, Gredeskul S A, Pastur L A, Lifshits I M, Pastur L A. Introduction to the theory of disordered systems[M]. Wiley, 1988. [2] Sanchez J M, Ducastelle F, Gratias D. Generalized cluster description of multicomponent systems[J]. Physica A, 1984, 128(1-2):334-350. [3] Sanchez J M. Cluster expansions and the configurational energy of alloys[J]. Phys. Rev. B, Nov 1993, 48:14013-14015. [4] Zunger A, Wei S H, Ferreira L G, Bernard J E. Special quasirandom structures[J]. Phys. Rev. Lett., Jul 1990, 65:353-356. [5] Wei S H, Ferreira L G, Bernard J E, Zunger A. Electronic properties of random alloys:Special quasirandom structures[J]. Phys. Rev. B, Nov 1990, 42:9622-9649. [6] van de Walle A, Ceder G. First-principles computation of the vibrational entropy of ordered and disordered Pd3V[J]. Phys. Rev. B, Mar 2000, 61:5972-5978. [7] Wu E J, Ceder G, van de Walle A. Using bond-length-dependent transferable force constants to predict vibrational entropies in Au-Cu, Au-Pd, and Cu-Pd alloys[J]. Phys. Rev. B, Apr 2003, 67:134103. [8] Ruban A V, Skriver H L. Screened Coulomb interactions in metallic alloys. I. Universal screening in the atomic-sphere approximation[J]. Phys. Rev. B, Jun 2002, 66:024201. [9] Ruban A V, Simak S I, Korzhavyi P A, Skriver H L. Screened Coulomb interactions in metallic alloys. II. Screening beyond the single-site and atomic-sphere approximations[J]. Phys. Rev. B, Jun 2002, 66:024202. [10] Jiang C. First-principles study of ternary bcc alloys using special quasi-random structures[J]. Acta Materialia, 2009, 57(16):4716-4726. [11] Soven P. Coherent-Potential Model of Substitutional Disordered Alloys[J]. Phys. Rev., Apr 1967, 156:809-813. [12] Taylor D W. Vibrational Properties of Imperfect Crystals with Large Defect Concentrations[J]. Phys. Rev., Apr 1967, 156:1017-1029. [13] Gyorffy B L. Coherent-Potential Approximation for a Nonoverlapping-Muffin-Tin-Potential Model of Random Substitutional Alloys[J]. Phys. Rev. B, Mar 1972, 5:2382-2384. [14] Faulkner J. The modern theory of alloys[J]. Progress in Materials Science, 1982, 27(1):1-187. [15] Abrikosov I A, Johansson B. Applicability of the coherent-potential approximation in the theory of random alloys[J]. Phys. Rev. B, Jun 1998, 57:14164-14173. [16] Ruban A V, Abrikosov I A. Configurational thermodynamics of alloys from first principles:effective cluster interactions[J]. Reports on Progress in Physics, 2008, 71(4):46501-0. [17] Faulkner J S, Stocks G M, Wang Y. Multiple Scattering Theory[M]. 2053-2563. IOP Publishing, 2018. [18] Faulkner J. The modern theory of alloys[M]. Pergamon, 1982. [19] Crampin S. Electronic Structure of Disordered Alloys, Surfaces and Interfaces, I. Turek, V. Drchal, J. Kudrnovsky, M. ob, P. Weinberger. Kluwer Academic Press, Singapore (1997), ISBN:0-7923-9798-3[J]. Computer Physics Communications, 1998, 111. [20] Faulkner J, Stocks G. Calculating properties with the coherent-potential approximation[J]. Physical Review B, 1980, 21(8):3222. [21] Gonis A, Butler W H. Multiple Scattering in Solids[J]. 2000. [22] Sébilleau, Didier. Basis-independent multiple-scattering theory for electron spectroscopies:General formalism[J]. Physical Review B, 2000, 61(20):14167-14178. [23] Zabloudil J, Weinberger P, Szunyogh L, Hammerling R. Electron Scattering in Solid Matter[J]. Springer Series in Solid-State Sciences, 2005, 147. [24] Zhang F X, Zhao S, Jin K, Xue H, Velisa G, Bei H, Huang R, Ko J Y P, Pagan D C, Neuefeind J C, Weber W J, Zhang Y. Local Structure and Short-Range Order in a NiCoCr Solid Solution Alloy[J]. Phys. Rev. Lett., May 2017, 118:205501. [25] Sanchez J M. Foundations and Practical Implementations of the Cluster Expansion[J]. Journal of Phase Equilibria and Diffusion, 2017, 38(3):238-251. [26] Tian F, Lin D Y, Gao X, Zhao Y F, Song H F. A structural modeling approach to solid solutions based on the similar atomic environment[J]. The Journal of Chemical Physics, 2020, 153(3):034101. [27] Tian F, Lin D Y, Gao X, Zhao Y F, Song H F. Erratum:"A structural modeling approach to solid solutions based on the similar atomic environment"[J. Chem. Phys. 153, 034101(2020)] [J]. The Journal of Chemical Physics, 2020, 153(8):089901. [28] Anagnostidis M, Colombié M, Monti H. Phases metastables dans les alliages uranium-niobium[J]. Journal of Nuclear Materials, 1964, 11(1):67-76. [29] Tangri K, Chaudhuri D K. Metastable phases in uranium alloys with high solute solubility in the BCC gamma phase. Part I the system U-Nb[J]. Journal of Nuclear Materials, 1965, 15(4):278-287. [30] Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6:15-50. [31] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, Oct, pages 11169-11186. [32] Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, Jan, pages 1758-1775. [33] Brown D W, Bourke M A M, Clarke A J, Field R D, Thoma D J. The effect of low-temperature aging on the microstructure and deformation of uranium 6wtstudy[J]. Journal of Nuclear Materials, 2016, 481:164-175. [34] Vitos L. Total-energy method based on the exact muffin-tin orbitals theory[J]. Phys. Rev. B, Jun 2001, 64:014107. [35] Vitos L, Abrikosov I A, Johansson B. Anisotropic Lattice Distortions in Random Alloys from First-Principles Theory[J]. Phys. Rev. Lett., Sep 2001, 87:156401. [36] Vitos L. Computational Quantum Mechanics for Materials Engineers[M]. Springer London, 2007. [37] Otero-De-La-Roza A, Víctor Luaña. Gibbs2:A new version of the quasi-harmonic model code. I. Robust treatment of the static data[J]. Computer Physics Communications, 2011, 182(8):1708-1720. [38] Wang Y, Li L. Mean-field potential approach to thermodynamic properties of metal:Al as a prototype[J]. Phys.rev.b, 2000, 62(1):196-202. [39] Song H F, Liu H F. Modified mean-field potential approach to thermodynamic properties of a low-symmetry crystal:Beryllium as a prototype[J]. Physical Review B Condensed Matter, 2007, 75(24):2288-2288. [40] McQueen R, Marsh S, Taylor J, Fritz J, Carter W. The equation of state of solids from shock wave studies[J]. High velocity impact phenomena, 1970, 293-417. |
[1] | 施意. 不同密度与粘性的多相流移动接触线问题的自适应有限元方法[J]. 数值计算与计算机应用, 2015, 36(4): 297-309. |
[2] | 蔡耀雄, 任全伟, 庄清渠. 一类四阶微积分方程的四阶差分格式[J]. 数值计算与计算机应用, 2014, 35(1): 59-68. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||