• 论文 • 上一篇    下一篇

扇形区域外问题的自适应边界元方法

邱亚南, 王娜, 刘东杰   

  1. 上海大学理学院, 上海 200444
  • 收稿日期:2020-08-14 出版日期:2021-12-15 发布日期:2021-12-07
  • 基金资助:
    国家自然科学基金(11571226)资助.

邱亚南, 王娜, 刘东杰. 扇形区域外问题的自适应边界元方法[J]. 数值计算与计算机应用, 2021, 42(4): 337-350.

Qiu Yanan, Wang Na, Liu Dongjie. THE ADAPTIVE BOUNDARY ELEMENT METHOD FOR PROBLEM IN EXTERIOR SECTOR DOMAIN[J]. Journal on Numerica Methods and Computer Applications, 2021, 42(4): 337-350.

THE ADAPTIVE BOUNDARY ELEMENT METHOD FOR PROBLEM IN EXTERIOR SECTOR DOMAIN

Qiu Yanan, Wang Na, Liu Dongjie   

  1. Department of Mathematics, College of Sciences, Shanghai University, Shanghai 200444, China
  • Received:2020-08-14 Online:2021-12-15 Published:2021-12-07
本文研究扇形区域外laplace问题的自适应自然边界元方法.我们充分利用了自然积分算子的特殊性质和积分核级数展开法,得到了两个新的可靠后验误差估计.数值算例验证了理论分析结果.
In this paper, we focus on the adaptive boundary element method (ABEM) of Laplace problem in exterior sector domain. The property of natural integral operator and the integral kernel series expansion method lead to the reliability a posteriori error estimates. Some numerical experiments conclude the paper with empirical evidence of the superiority of the ABEM.

MR(2010)主题分类: 

()
[1] 余德浩. 自然边界元方法的数学理论[M]. 北京: 科学出版社, 1993.
[2] 余德浩. 断裂及凹角扇形域上调和正则积分方程的数值解[J]. 数值计算与计算机应用, 1983, (3): 183-188.
[3] 陈亚军, 杜其奎. 椭圆外无穷扇形区域边值问题的自然边界元法[J]. 南京师大学报(自然科学版), 2009.
[4] 杨敏. 无穷凹角区域椭圆边值问题的区域分解算法[J]. 南京: 南京师范大学, 2003.
[5] 祝家麟. 椭圆边值问题的边界元分析[M]. 北京: 科学出版社, 1991.
[6] Zhang Xiaoping, Wu Jiming, Yu Dehao. The superconvergence of composite trapezoidal rule for Hadamard finite-part integral on a circle and its application[J]. International J.of Comput. Math.,, 2010, 87(4):855-876.
[7] Faermann B. Localization of the Aronszajn-Slobodeckij norm and application to adaptive boundary element methods[J]. Part I. The two-dimensional case, IMA J. Numer. Anal., 2000, 20:203-234.
[8] Carsten Carstensen, Dirk Praetorius. Averaging techniques for the a posteriori bem error control for a Hypersingular integral equation in two dimensions[J]. SIAM J. Sci. Comput., 2007, 29:782-810.
[9] Carsten Carstensen, Ernst Pstephan. Adaptive Boundary Element method for some First kind Integral Equations[J]. SIAM J. Numer. Anal., 1996, 33(6):2166-2183.
[10] Carstensen C, Stephan E P. A posteriori error estimates for boundary element methods[J]. Math. Comput., 1995, 64(210):483-500.
[11] Carstensen C. An a posteriori error estimate for a first-kind integral equation[J]. Math. Comput., 1997, 66(217):139-155.
[12] Ervin V J, Heuer N. An adaptive boundary element method for the exterior Stokes problem in three dimensions[J]. IMA J. Numer. Anal., 2006, 26(2):297-325.
[13] Mund P, Stephan EP, Weisse J. Two-level methods for the single layer potential in R3[J]. Computing, 1998, 60(3):243-266.
[14] Erath C, Ferraz-Leite S, Funken S, Praetorius D. Energy norm based a posteriori error estimation for boundary element methods in two dimensions[J]. Appl NumerMath, 2009, 59(11):2713-2734.
[15] Carstensen C, Feischl M, Page M, Praetorius D. HILBERT-a MATLAB inplementation of adaptive 2D-BEM HILBERT is a lovely boundary element research tool[J]. Numer. Algor., 2014, 67:1-32.
[16] Erath C, Funken S, Goldenits P, Praetorius D. Simple error estimations for the Galerkin Bem for some Hypersingular Integral Equation in 2D[J]. Appl. Anal., 2012, 92(6):1194-1216.
[17] Markus Aurada, Michael Ebner, Michael Feischl, Samuel Ferraz-leite, Thomas Fuhrer, Petra Goldenits, Michael Karkulik, Markus Mayr, and Dirk Praetorius. HILBERT(RELEASE 3):A MATLAB implemeniaition of adaptive bem[J]. Numer.
[18] Matthias Maischak. The analytical computeation of Galerkin elements for the Laplace, Lame and Helmholtz rquation in 2D-BEM[J], Preprint, Institut fur Angewandte Mathematik, University Hannover, Hannover, 1999.
[19] Wendland W L, Yu Dehao. Adaptive Boundary Element method for strongly Elliptic Integral Equations[J]. Numer. Math. 1988, 53:539-558.
[20] Zienkiewicz O C, Zhu J Z. A simple error estimator and adaptive procedure for practical engineering analysis[J]. Int. J. Numer. Meth. Eng., 1987, 24(2):337-357.
[21] Feischl M, Führer T, Karkulik M, Praetorius D. ZZ-type a posteriori error estimators for adaptive boundary element methods on a curve[J]. Eng. Anal. Bound Elem., 2014, 38:49-60.
[1] 刘会坡,严宁宁. Stokes方程最优控制问题的超收敛分析[J]. 数值计算与计算机应用, 2006, 27(4): 281-291.
阅读次数
全文


摘要