• 论文 • 上一篇    

求解极坐标系下反应扩散方程的紧致隐积分因子方法

霍俊蓉1, 张荣培2   

  1. 1. 沈阳师范大学 数学与系统科学学院, 沈阳 110034;
    2. 广东工业大学 应用数学学院, 广州 510006
  • 收稿日期:2019-12-11 发布日期:2021-06-03
  • 通讯作者: 张荣培, Email: rongpeizhang@163.com.
  • 基金资助:
    辽宁省自然科学基金(20180550996)资助.

霍俊蓉, 张荣培. 求解极坐标系下反应扩散方程的紧致隐积分因子方法[J]. 数值计算与计算机应用, 2021, 42(2): 146-154.

Huo Junrong, Zhang Rongpei. COMPACT IMPLICIT INTEGRATION FACTOR METHOD FOR SOLVING REACTION DIFFUSION EQUATION IN POLAR COORDINATE[J]. Journal on Numerica Methods and Computer Applications, 2021, 42(2): 146-154.

COMPACT IMPLICIT INTEGRATION FACTOR METHOD FOR SOLVING REACTION DIFFUSION EQUATION IN POLAR COORDINATE

Huo Junrong1, Zhang Rongpei2   

  1. 1. College of Mathematics and System Science, Shenyang Normal University, Shenyang 110034, China;
    2. School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510006, China
  • Received:2019-12-11 Published:2021-06-03
反应扩散方程在物理、化学和生物等领域有着重要的应用. 以往的工作主要在矩形区域上考虑求解, 本文研究圆形和环形区域上求解反应扩散方程. 首先将反应扩散方程写成极坐标形式, 利用二阶有限差分方法在空间r 方向和θ方向分别进行离散. 将网格上的数值解以矩阵形式表示, 并且将微分算子离散成矩阵形式, 从而得到紧致形式下的非线性常微分方程组, 然后应用隐积分因子方法求解该非线性常微分方程组. 紧致隐积分因子方法不仅降低了存储量, 而且在每一个时间层只需要求解局部的非线性代数方程组. 最后给出数值算例, 选取带有精确解的反应扩散方程以及Schnakenberg模型, 在圆形和环形区域上求解反应扩散方程组, 数值结果显示该方法能够快速且准确地计算.
Reaction diffusion equations are widely used in physics, chemistry and biology. The previous work mainly considered the solution on the rectangular region. In this paper, the reaction-diffusion equations in circular and annular regions are studied. First, the reactiondiffusion equation is written in polar coordinate form, and the second-order finite difference method is used to discretize in spatial direction. The numerical solution on the grid is written in the matrix form, and the differential operator is discretized into matrix form, thus the nonlinear ordinary differential equations in compact form are obtained. Then the implicit integration factor method is used to solve the nonlinear ordinary differential equations. The compact implicit integral factor method not only reduces the storage, but also only needs to solve the local nonlinear algebraic equations at each time level. Finally, the numerical examples are given. The reaction-diffusion equation with exact solutions and Schnakenberg model are selected to solve on the circular and annular regions. The numerical results show that the computation with our method is efficient and accurate.

MR(2010)主题分类: 

()
[1] 张荣培, 王震, 王语, 韩子健. 反应扩散模型在图灵斑图中的应用及数值模[J]. 物理学报, 2018, 67(05): 51–59.
[2] Tian C R. Turing Pattern Formation in a Semiarid Vegetation Model with Fractional-in-Space Diffusion[J]. Bull. Math. Biol., 2015, 77(11): 72–85.
[3] Diego Alexander Garzón Alvarado. How the Formation of the Turing Pattern Could Be Used in a Bio-Mechano-Chemical Framework for Describing Development of Bones and Joints[J]. FASEB. J., 2019, 33(S1): 16.1.
[4] Lacitignola D, Bozzini B, Frittelli M, Sgura I. Turing Pattern Formation on the Sphere for a Morphochemical Reaction-diffusion Model for Electrodeposition[J]. Commun. Nonlinear Sci. Numer. Simul., 2017, 48: 484–508.
[5] Das D. Turing Pattern Formation in Anisotropic Medium[J]. J. Math. Chem., 2017, 55(3): 818– 831.
[6] E. Özuǧurlu. A Note on the Numerical Approach for the Reaction-diffusion Problem to Model the Density of the Tumor Growth Dynamics[J]. Comput. Math. Appl., 2015, 69(12): 1504–1517.
[7] Liu C, Li L, Wang Z, Wang R W. Pattern Transitions in a Vegetation System with Crossdiffusion[J]. Appl. Math. Comput., 2019, 342: 255–262.
[8] Wang W M Liu H Y Cai Y L, Li Z Q. Turing Pattern Selection in a Reaction-diffusion Epidemic Model[J]. Chin. Phys. B., 2011, 20(07): 290–301.
[9] Zhang R P, Wang Z, Liu J, Liu L M. A Compact Finite Difference Method for Reaction-diffusion Problems Using Compact Integration Factor Methods in High Spatial Dimensions[J]. Adv. Differ. Equ., 2018(1): 274.
[10] Zhang R P, Yu X J, Zhu J, Abimael F D. Loula. Direct Discontinuous Galerkin Method for Nonlinear Reaction–diffusion Systems in Pattern Formation[J]. Elsevier Inc., 2014, 38(5–6): 1612– 1621.
[11] 张荣培, 李明军, 蔚喜军.Chebyshev谱配置方法求解反应扩散方程组[J]. 数值计算与计算机应用, 2017, 38(4): 271–281.
[12] Zhu, Y T, Zhang S, Newman A, Alber M. Application of Discontinuous Galerkin Methods for Reaction-diffusion Systems in Developmental Biology[J]. J. Sci. Comput., 2009, 40: 391–418.
[13] Chen S Q, Zhang Y T. Krylov Implicit Integration Factor Methods For Spatial Discretization on High Dimensional Unstructured Meshes: Application to Discontinuous Galerkin Methods[J]. J. Comput. Phy., 2011, 230(11): 4336–4352.
[14] Liu J, Tavener S. Semi-implicit Spectral Collocation Methods for Reaction-diffusion Equations on Annuli[J]. Numer. Methods Partial Diff. Equ., 2011, 27(5): 1113–1129.
[15] 张荣培.求解反应扩散方程的紧致隐积分因子方法[J]. 中国海洋大学学报(自然科学版), 2012, 42(S1): 208–212.
[16] Nie Q, Wan F, Zhang Y T, Liu X F. Compact Integration Factor Methods in High Spatial Dimensions[J]. J. Comput. Phy., 2008, 227(10): 5238–5255.
[17] Gong Y Z, Wang Q, Wang Y S, Cai J X. A conservative Fourier Pseudo-spectral Method for the Nonlinear Schrödinger Equation[J]. J. Comput. Phy., 2017, 328: 354–370.
[18] Schnakenberg J. Simple Chemical Reaction Systems with Limit Cycle Behaviour[J]. J. Theor. Biol., 1979, 81(3): 389–400.
[19] Alber M, Glimm T, Hentschel H G E, Kazmierczak B, Zhang Y T, Zhu J F, Newman S A. The Morphostatic Limit for a Model of Skeletal Pattern Formation in the Vertebrate Limb[J]. Bull. Math. Biol., 2008, 70(2): 460–483.
[20] Nie Q, Wan F Y M, Zhang Y T, et al. Compact Integration Factor Methods In High Spatial Dimensions[J]. J. Comput. Phy., 2008, 227(10): 5238–5255.
[1] 李辰, 郭启龙, 孙东, 刘朋欣. 一种求解双曲守恒律方程的中心型WENO格式[J]. 数值计算与计算机应用, 2020, 41(3): 246-258.
[2] 汪海鹭, 吴华. 二维非线性反应扩散方程的局部间断Galerkin谱元法[J]. 数值计算与计算机应用, 2020, 41(1): 1-18.
[3] 陈建灵, 冯仰德. 有限差分法求解声子热输运方程[J]. 数值计算与计算机应用, 2019, 40(3): 215-229.
[4] 尹旭, 卢朓, 姜海燕. 数值求解含时Wigner方程的一种高阶算法[J]. 数值计算与计算机应用, 2019, 40(1): 21-33.
[5] 张书华, 李景焕, 李瑜. PPP项目多阶段投资时机决策的最优多停时模型及数值求解[J]. 数值计算与计算机应用, 2018, 39(3): 205-216.
[6] 澈力木格, 何斯日古楞, 李宏. 大气污染模型的POD基降维有限差分算法[J]. 数值计算与计算机应用, 2018, 39(3): 172-182.
[7] 张荣培, 李明军, 蔚喜军. Chebyshev谱配置方法求解反应扩散方程组[J]. 数值计算与计算机应用, 2017, 38(4): 271-281.
[8] 邱俊, 胡晓, 王汉权. 数字图像修复的变分方法与实现过程[J]. 数值计算与计算机应用, 2016, 37(4): 273-286.
[9] 卿欢, 李晓, 纪光华, 张辉. 求解Cahn-Hilliard方程非线性项的两种数值格式对比[J]. 数值计算与计算机应用, 2016, 37(2): 95-115.
[10] 刘艳峰, 魏兵. 基于二维FDFD分析金属柱阵列的双站RCS[J]. 数值计算与计算机应用, 2014, 35(2): 81-91.
[11] 代健, 褚天舒, 杨照. 基于OpenCL的GPU加速三维时域有限差分电磁场仿真算法研究[J]. 数值计算与计算机应用, 2014, 35(1): 8-20.
[12] 吴正, 阳佳慧, 张依文. 具有巴黎期权特性的可转债定价问题研究[J]. 数值计算与计算机应用, 2013, 34(4): 295-304.
[13] 闵涛, 任菊成, 耿蓓. Chebyshev谱-Euler混合方法求解一类非线性Burgers方程[J]. 数值计算与计算机应用, 2013, 34(2): 81-88.
[14] 刘薇薇, 张亮, 马光克, 隋波, 张扬. TTI介质井间地震波场紧致交错网格高阶有限差分模拟及边界条件[J]. 数值计算与计算机应用, 2012, 33(4): 261-273.
[15] 黄文艳, 魏剑英, 葛永斌. 三维非定常不可压涡量——速度Navier-Stokes方程组的有限差分法[J]. 数值计算与计算机应用, 2012, 33(4): 301-311.
阅读次数
全文


摘要