• 论文 • 上一篇    

基于广义惩罚加权最小二乘的低剂量CT重建方法

牛善洲1, 刘宏1, 朱赟2, 喻高航3, 马建华4   

  1. 1. 赣南师范大学 数学与计算机科学学院, 赣州 341000;
    2. 赣南师范大学 物理与电子信息学院, 赣州 341000;
    3. 杭州电子科技大学理学院, 杭州 310000;
    4. 南方医科大学 生物医学工程学院, 广州 510515
  • 收稿日期:2020-04-26 出版日期:2021-09-15 发布日期:2021-09-17
  • 基金资助:
    国家自然科学基金(11701097,12071104,U1708261);江西省科技创新杰出青年人才资助计划项目(20192BCB23019);江西省“双千计划”科技创新高端人才(青年)项目;赣州市科技创新人才计划;江西省重点研发计划一般项目(20202BBE53024);江西省科技支撑计划重点项目(20161BBF60089);江西省教育厅科学技术研究项目(GJJ170822);浙江省自然科学基金(LD19A010002)资助.

牛善洲, 刘宏, 朱赟, 喻高航, 马建华. 基于广义惩罚加权最小二乘的低剂量CT重建方法[J]. 数值计算与计算机应用, 2021, 42(3): 289-302.

Niu Shanzhou, Liu Hong, Zhu Yun, Yu Gaohang, Ma Jianhua. GENERALIZED PENALIZED WEIGHTED LEAST-SQUARES APPROACH FOR LOW-DOSE X-RAY CT RECONSTRUCTION[J]. Journal on Numerica Methods and Computer Applications, 2021, 42(3): 289-302.

GENERALIZED PENALIZED WEIGHTED LEAST-SQUARES APPROACH FOR LOW-DOSE X-RAY CT RECONSTRUCTION

Niu Shanzhou1, Liu Hong1, Zhu Yun2, Yu Gaohang3, Ma Jianhua4   

  1. 1. School of Mathematics and Computer Science, Gannan Normal University, Ganzhou 341000, China;
    2. School of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, China;
    3. School of Science, Hangzhou Dianzi University, Hangzhou 310000, China;
    4. School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
  • Received:2020-04-26 Online:2021-09-15 Published:2021-09-17
针对低剂量CT成像问题,本文提出了一个基于广义惩罚加权最小二乘的低剂量CT重建方法,并在一定条件下建立了算法的全局收敛性定理.首先对投影数据进行统计建模构建广义加权最小二乘保真项,并且将二次先验信息引入投影数据的恢复过程中,从而达到抑制噪声的目的,最后使用经典的滤波反投影算法对恢复后的投影数据进行解析重建.实验结果表明,与惩罚加权最小二乘方法相比,新方法可以有效地抑制低剂量CT图像中的噪声和伪影,同时可以很好地保持图像的结构信息和空间分辨率.
In this paper, we propose a generalized penalized weighted least-squares (PWLS) approach for low-dose CT imaging. Incorporating with a quadratic functional regularization, a generalized penalized weighted least-squares (GPWLS) approach was proposed to projection (sinogram) noise reduction, and then inverts the Radon transform for image reconstruction by filtered backprojction (FBP) algorithm. Both qualitative and quantitative studies were conducted using digital phantoms to evaluate the proposed GPWLS method. Experimental results show that the GPWLS method can achieve images with several noticeable advantages over the existing methods in terms of noise reduction and contrast-to-noise ratio.

MR(2010)主题分类: 

()
[1] Einstein A J, Henzlova M J, and Rajagopalan S. Estimating risk of cancer associated with radiation exposure from 64-slice CT coronary angiography[J]. J Am Med Assoc, 2007, 298:317-323.
[2] Brenner D J and Hall E J. CT-An increasing source of radiation exposure[J]. New Eng J Med, 2007, 357:2277-2284.
[3] Hall E J and Brenner D J. Cancer risks from diagnostic radiology[J]. Br J Radiol, 2008, 81:362-378.
[4] Wang J, Li T, Lu H, and Liang Z. Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography[J]. IEEE Trans Med Imaging, 2006, 24:1272-1283.
[5] Sidky E Y and Pan X. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization[J]. Phys Med Biol, 2008, 53:4777-4807.
[6] Gao Y, Bian Z, Huang J, Zhang Y, Niu S, Feng Q, Chen W, Liang Z and Ma J. Low-dose X-ray computed tomography image reconstruction with a combined low-mAs and Sparse-view protocol[J]. Optics Express, 2014, 22:15190-15210.
[7] Bian Z, Ma J, Huang J, Zhang H, Niu S, Feng Q, Liang Z and Chen W. SR-NLM:A sinogram restoration induced non-local means image filter for low-dose computed tomography[J]. Comut Med Imag Grap, 2013, 37:293-303.
[8] Niu S, Gao Y, Bian Z, Huang J, Chen W, Yu G, Liang Z and Ma J. Sparse-view x-ray CT reconstruction via total generalized variation regularization[J]. Phys Med Biol, 2014, 59:2997-3017.
[9] Hsieh J. Adapttive streak artifact reduction in computed tomography resulting from excessive x-ray photon noise[J]. Med Phys, 1998, 25:2139-2147.
[10] Demirkaya K. Reduction of noise and image artifacts in computed tomography by nonlinear filgtration of projection images[C]. SPIE Med Imag, 2001, 4322:917-923.
[11] La Rivière P J, Bian J, Varas P A. Penalized-likelihood sinogram restoration for computed tomography[J]. IEEE Trans Med Imaging, 2006, 25:1022-1036.
[12] Lu H, Li X, Hsiao I T, Liang Z. Analytical noise treatment for low-dose CT projection data by penalized weighted least-square smoothing in the K-L domain[C]. SPIE Med Imag, 2002, 4682:146-152.
[13] Li T, Li X, Wang J, Wen J, Lu H, Hsieh J, Liang Z. Nonlinear sinogram smoothing for low-dose x-ray CT[J]. IEEE Trans Nucl Sci, 2004, 51:2505-2531.
[14] Wang J, Lu H, Wen J, Liang Z. Multicale penalized weighted least-squares sinogram restoration for low-dose x-ray computed tomography[J]. IEEE Trans Biomed Eng, 2008, 55:1022-1031.
[15] Ma J, Liang Z, Fan Y, Liu Y, Huang J, Chen W, Lu H. Variance analysis of X-ray CT sinograms in the presence of electronic noise background[J]. Med Phys, 2012, 39:4051-4065.
[16] Combettes P L and Wajs V R. Signal recovery by proximal forward-back splitting[J]. Multiscale Model Simul, 2005, 4:1168-1200.
[17] Opial Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings[J]. Bull Amer Math Soc, 1967, 73:591-597.
[18] Ma J, Zhang H, Gao Y, Huang J, Liang Z, Feng Q and Chen W. Iterative image reconstruction for cerebral perfusion CT using a pre-contrast scan induced edge-preserving prior[J]. Phys Med Biol, 2012, 57:7519-7542.
[1] 廖明杰, 王浩磊, 张镭. Julia编程语言在材料模拟中的应用[J]. 数值计算与计算机应用, 2021, 42(1): 71-79.
[2] 澈力木格, 何斯日古楞, 李宏. 大气污染模型的POD基降维有限差分算法[J]. 数值计算与计算机应用, 2018, 39(3): 172-182.
[3] 申远, 李瑶. 一种求解带有冲击噪声的图像去模糊去噪问题的变步长分裂Bregman算法[J]. 数值计算与计算机应用, 2018, 39(1): 44-59.
[4] 刘群锋, 陈景周, 徐钦桂. 多水平直接搜索全局优化方法[J]. 数值计算与计算机应用, 2017, 38(4): 297-311.
[5] 申远, 刘珊珊. 一种新的自适应步长梯度投影法[J]. 数值计算与计算机应用, 2016, 37(4): 307-314.
[6] 张纯, 蔡邢菊, 韩德仁. 求鞍点问题的新的原始-对偶算法[J]. 数值计算与计算机应用, 2016, 37(3): 167-178.
[7] 赵海峰,  刘新为. 退化线性规划的一个新的改进的单纯形方法[J]. 数值计算与计算机应用, 2012, 33(2): 109-120.
[8] 董晓亮, 高岳林, 何郁波. 一类基于Armijo搜索的改进DY共轭梯度法及其全局收敛性[J]. 数值计算与计算机应用, 2011, 32(4): 253-258.
[9] 徐海文. 一类单调非线性变分不等式的前向加速收缩算法[J]. 数值计算与计算机应用, 2011, 32(4): 259-266.
[10] 刘金魁, 杜祥林, 屈娟. 一种新的三项梯度下降算法[J]. 数值计算与计算机应用, 2011, 32(4): 283-292.
[11] 曲巨宝. 基于核函数的Camshift算法的收敛性分析[J]. 数值计算与计算机应用, 2011, 32(2): 148-158.
[12] 张丽炜, 倪勤. 解非线性等式约束优化问题的新锥模型信赖域算法[J]. 数值计算与计算机应用, 2010, 31(4): 279-289.
[13] 马明, 刘华. 基于最小平方误差逼近的线性阀体的设计[J]. 数值计算与计算机应用, 2010, 31(3): 214-222.
[14] 邹战勇. 关于Hamilton-Jacobi-Bellman方程的一种新的多重网格法[J]. 数值计算与计算机应用, 2010, 31(3): 183-190.
[15] 胡平, 倪勤. 一个松弛非单调线搜索法[J]. 数值计算与计算机应用, 2010, 31(3): 191-199.
阅读次数
全文


摘要