• 论文 • 上一篇
张文生, 张丽娜
张文生, 张丽娜. 基于有限元方法的频率域弹性波全波形反演[J]. 数值计算与计算机应用, 2020, 41(4): 315-336.
Zhang Wensheng, Zhang Lina. ELASTIC WAVE FULL-WAVEFORM INVERSION BASED ON THE FINITE-ELEMENT METHOD IN THE FREQUENCY DOMAIN[J]. Journal on Numerica Methods and Computer Applications, 2020, 41(4): 315-336.
Zhang Wensheng, Zhang Lina
MR(2010)主题分类:
分享此文:
[1] Tarantola A. Inversion of seismic reflection data in the acoustic approximation[J]. Geophysics, 1984, 49(8):1259-1266.[2] Tarantola A. A strategy for nonlinear elastic inversion of seismic reflection data[J]. Geophysics, 1986, 51(10):1893-1903.[3] Mora P. Nonlinear two-dimensional elastic inversion of multioffset seismic data[J]. Geophysics, 1987, 52(9):1211-1228.[4] Sheen D H, Tuncy K, Baag C, et al.. Time domain Gauss-Newton seismic waveform inversion in elastic media[J]. Geophys. J. Int., 2006, 167(3):1373-1384.[5] Plessix, R E. A review of the adjoint-state method for computing the gradient of a functional with geophysical applications[J]. Geophys. J. Int., 2006, 167(167):495-503.[6] 张文生, 罗嘉, 滕吉文. 频率多尺度全波形速度反演[J]. 地球物理学报, 2015, 58(1):216-228.[7] Pratt R G, Worthington M H. The application of diffraction tomography to crosshole data[J]. Geophysics, 1988, 53(10):1284-1294.[8] Song Z M, Williamson P R, Pratt R G. Frequency-domain acoustic-wave modeling and inversion of crosshole data:Part 2 Inversion method, synthetic experiments and real-data results[J]. Geophysics, 1995, 60(3):796-809.[9] Pratt R G, Shin C, Hicks. Gauss-Newton and full Newton methods in frequency-space seismic waveform inversion[J]. Geophys. J. Int., 1998, 133(2):341-362.[10] Pratt R G. Seismic waveform inversion in the frequency domain Part I:Theory and verification in a physical scale model[J]. Geophysics, 1999, 64(3):888-901.[11] Virieux J, Operto S. An overview of full-waveform inversion in exploration geophysics[J]. Geophysics, 2009, 74(6):WCC127-WCC152.[12] 张文生, 庄源. 频率域声波方程全波形反演[J]. 数值计算与计算机应用, 2017, 38(3):167-196.[13] Shin C, Cha Y H. Waveform inversion in the Laplace domain[J]. Geophys. J, Int., 2008, 173(3):922-931.[14] Ha T, Shin C. Laplace-domain full-waveform inversion of seismic data lacking low-frequency information[J]. Geophysics, 2012, 75(5):R196-206.[15] Shin C, Ha W. A comparison between the behavior of objective functions for waveform inversion in the frequency and Laplace domains[J]. Geophysics, 2008, 73(5):VE119-VE133.[16] Shin C, Cha Y H. Waveform inversion in the Laplace-Fourier domain[J]. Geophys. J. Int., 2009, 177(3):1067-1079.[17] Epanomeritakis I, Akcelik V, Ghattas O, et al.. A Newton-CG method for large-scale threedimensional elastic full waveform seismic inversion[J]. Inverse Problems, 2008, 24(3):1-26.[18] Bunks C, Saleck F, Zaleski S, et al.. Multiscale seismic waveform inversion[J]. Geophysics, 1995, 60(5):1457-1473.[19] Wu R S, Luo J, Wu B. Seismic envelop inversion and modulation signal model[J]. Geophysics, 2014, 79(3):WA13-WA24.[20] Zhang W, Joardar A K. Acoustic based crosshole full waveform slowness inversion in the time domain[J]. 2018 J. Applied Mathematics and Physics, 6:1086-1110.[21] Jo C H, Shin C S, Suh J H. An optimal 9 point, finite difference, frequency-space, 2-D wave extrapolator[J]. Geophysics, 1996, 61(2):529-537.[22] Zhang W, Zhuang Y, Chung E. A new spectral finite volume method for elastic wave modelling on unstructured mesh[J]. Geophys. J. Int., 2016, 206:292-307.[23] Clayton R, Engquist B. Absorbing boundary conditions for acoustic and elastic wave equations[J]. Bulletin of the Seismological Society of America, 1977, 67(6):1529-1540.[24] Zhang W, Chung E T and Wang C. Stability for imposing absorbing boundary condition in the finite element simulation of acoustic wave propagation[J]. J. Comput. Math., 2014, 32(1):1-20.[25] Berenger J P. A perfectly matched layer for the absorbing of electromagnetic waves[J]. J. Comput. Phys., 1994, 114(2):185-200.[26] Komatitsch D, Tromp J. A perfectly matched layer absorbing boundary condition for the secondorder seismic wave equations[J]. Geophys. J. Int., 2003, 154(1):146-153.[27] Komatitsch D. An unsplit convolutional perfectly matched layer improved at grazing incidence for the seismic wave equation[J]. Geophysics, 2007, 72(4):157-167.[28] Grote M J, Keller JB. Exact nonreflecting boundary conditions for the time dependent wave equation[J]. SIAM J. Appl. Math., 1995, 55(2):280-297.[29] Zhang W, Tong L, Chung E T. Exact nonreflecting boundary conditions for three dimensional poroelastic wave equations[J]. Commun. Math. Sci., 2014, 12(1):61-98.[30] Shin C, Yoon K, Marfurt K J, et al.. Efficient calculation of a partial-derivative wavefield using reciprocity for seismic imaging and inversion[J]. Geophysics, 2001, 66(6):1865-1863.[31] 袁亚湘, 孙文瑜著. 最优化理论与方法[M]. 北京:科学出版社, 2005.[32] Vogel C R. Computational Methods for Inverse Problems[M]. SIAM, Philadelphia, PA, 2002. |
[1] | 谢和虎. 子空间扩展算法及其应用[J]. 数值计算与计算机应用, 2020, 41(3): 169-191. |
[2] | 王芹, 马召灿, 白石阳, 张林波, 卢本卓, 李鸿亮. 三维半导体器件漂移扩散模型的并行有限元方法研究[J]. 数值计算与计算机应用, 2020, 41(2): 85-104. |
[3] | 马召灿, 许竞劼, 卢本卓, 李鸿亮. 半导体器件电离辐照损伤效应模拟的数值算法及应用[J]. 数值计算与计算机应用, 2020, 41(2): 105-120. |
[4] | 黄成梓, 白石阳, 王芹, 马召灿, 张倩茹, 刘田田, 桂升, 卢本卓, 陈旻昕, 李鸿亮. 3Ddevice:半导体器件及其辐照损伤效应仿真软件系统[J]. 数值计算与计算机应用, 2020, 41(2): 121-142. |
[5] | 葛志昊, 李婷婷, 王慧芳. 双资产欧式期权定价问题的特征有限元方法[J]. 数值计算与计算机应用, 2020, 41(1): 27-41. |
[6] | 徐小文. 并行代数多重网格算法:大规模计算应用现状与挑战[J]. 数值计算与计算机应用, 2019, 40(4): 243-260. |
[7] | 李瑜, 谢和虎. 基于特征线法的群体平衡系统的数值模拟[J]. 数值计算与计算机应用, 2019, 40(4): 261-278. |
[8] | 杨亦晨. Boltzmann方程各向异性矩模型的数值方法[J]. 数值计算与计算机应用, 2019, 40(2): 83-97. |
[9] | 谢和虎, 谢满庭, 张宁. 一种求解半线性问题的快速多重网格法[J]. 数值计算与计算机应用, 2019, 40(2): 143-160. |
[10] | 邓维山, 徐进. 一种泊松-玻尔兹曼方程稳定算法的高效有限元并行实现[J]. 数值计算与计算机应用, 2018, 39(2): 91-110. |
[11] | 卢晴, 舒适, 彭洁. 一种变系数扩散问题有限体积格式的高效预条件子[J]. 数值计算与计算机应用, 2018, 39(2): 150-160. |
[12] | 崔孟雷, 李春光, 庄心善. 全局坐标系下有限元形函数的直接构造方法[J]. 数值计算与计算机应用, 2018, 39(1): 28-36. |
[13] | 李政, 吴淑红, 李巧云, 张晨松, 王宝华, 许进超, 赵颖. 精细油藏模拟的一种线性求解算法[J]. 数值计算与计算机应用, 2018, 39(1): 1-9. |
[14] | 余涛, 张镭. 线性弹性问题的局部正交分解方法[J]. 数值计算与计算机应用, 2018, 39(1): 10-19. |
[15] | 张文生, 庄源. 频率域声波方程全波形反演[J]. 数值计算与计算机应用, 2017, 38(3): 167-196. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||