钱振语, 刘新国
钱振语, 刘新国. 求解正交非均衡Procrustes问题的MM方法[J]. 数值计算与计算机应用, 2020, 41(4): 297-305.
Qian Zhenyu, Liu Xinguo. AN MM METHOD FOR SOLVING ORTHOGONAL UNBALANCED PROCRUSTES PROBLEM[J]. Journal of Numerical Methods and Computer Applications, 2020, 41(4): 297-305.
Qian Zhenyu, Liu Xinguo
MR(2010)主题分类:
分享此文:
[1] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM journal on imaging sciences, 2009, 2(1):183-202.[2] Adam W Bojanczyk and Adam Lutoborski. The procrustes problem for orthogonal stiefel matrices[J]. SIAM Journal on Scientific Computing, 1999, 21(4):1291-1304.[3] Moody T Chu and Nickolay T Trendafilov. The orthogonally constrained regression revisited[J]. Journal of Computational and Graphical Statistics, 2001, 10(4):746-771.[4] Jan De Leeuw and Willem J Heiser. Convergence of correction matrix algorithms for multidimensional scaling. Geometric representations of relational data, 1977, 735-752.[5] Bert F Green. The orthogonal approximation of an oblique structure in factor analysis[J]. Psychometrika, 1952, 17(4):429-440.[6] BF Green and JC Gower. A problem with congruence. In Annual meeting of the psychometric society, Monterey, California, 1979.[7] Nicholas J Higham. Functions of matrices:theory and computation. Siam, 2008.[8] John R Hurley and Raymond B Cattell. The procrustes program:Producing direct rotation to test a hypothesized factor structure[J]. Behavioral science, 1962, 7(2):258-262.[9] Kenneth Lange, David R Hunter, and Ilsoon Yang. Optimization transfer using surrogate objective functions[J]. Journal of computational and graphical statistics, 2000, 9(1):1-20.[10] Yu Nesterov. A method of solving a convex programming problem with convergence rate o (1/k2)[J]. In Sov. Math. Dokl, 1982, 27:372-376.[11] Nie Feiping, Zhang Rui, and Li Xuelong. A generalized power iteration method for solving quadratic problem on the stiefel manifold[J]. Science China Information Sciences, 2017, 60(11):112101.[12] James M Ortega and Werner C Rheinboldt. Iterative solution of nonlinear equations in several variables. volume 30. Siam, 1970.[13] Haesun Park. A parallel algorithm for the unbalanced orthogonal procrustes problem[J]. Parallel Computing, 1991, 17(8):913-923.[14] Peter H Schönemann. A generalized solution of the orthogonal procrustes problem[J]. Psychometrika, 1966, 31(1):1-10.[15] Jos MF ten Berge and Dirk L Knol. Orthogonal rotations to maximal agreement for two or more matrices of different column orders[J]. Psychometrika, 1984, 49(1):49-55.[16] Xia Yong and Han Yingwei. Partial lagrangian relaxation for the unbalanced orthogonal procrustes problem[J]. Mathematical Methods of Operations Research, 2014, 79(2):225-237.[17] Zhang Zhenyue and Du Keqin. Successive projection method for solving the unbalanced procrustes problem[J]. Science in China Series A, 2006, 49(7):971-986. |
[1] | 刘辉, 崔涛, 冷伟. hp自适应有限元计算中一种新的自适应策略[J]. 数值计算与计算机应用, 2015, 36(2): 100-112. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||