• 论文 • 上一篇    下一篇

求解正交非均衡Procrustes问题的MM方法

钱振语, 刘新国   

  1. 中国海洋大学数学科学学院, 青岛 266100
  • 收稿日期:2019-08-28 出版日期:2020-12-15 发布日期:2020-12-15
  • 基金资助:

    国家自然科学基金(11871444)部分资助.

钱振语, 刘新国. 求解正交非均衡Procrustes问题的MM方法[J]. 数值计算与计算机应用, 2020, 41(4): 297-305.

Qian Zhenyu, Liu Xinguo. AN MM METHOD FOR SOLVING ORTHOGONAL UNBALANCED PROCRUSTES PROBLEM[J]. Journal of Numerical Methods and Computer Applications, 2020, 41(4): 297-305.

AN MM METHOD FOR SOLVING ORTHOGONAL UNBALANCED PROCRUSTES PROBLEM

Qian Zhenyu, Liu Xinguo   

  1. School of Mathematical Science, Ocean University of China, QingDao 266100, China
  • Received:2019-08-28 Online:2020-12-15 Published:2020-12-15
给出了求解正交非均衡Procrustes问题的MM方法并分析了收敛性.为了克服算法迭代次数多和计算结果依赖初始迭代点的困难,设计了特殊的初始点选取策略,并使用了拟牛顿加速及Nesterov加速技巧。数值结果显示,在一定情形下,提出的算法相比已有方法有优势.
The MM method for solving the orthogonal unbalanced Procrustes problem is given and the convergence is analyzed. Generally the MM method converges slowly and the computed results relies on the initial point.some special initial point selection strategies are designed. Furthermore the quasi-Newton acceleration and Nesterov acceleration techniques are used. Numerical results demonstrate that the proposed algorithm has advantages over the existing methods under certain circumstances.

MR(2010)主题分类: 

()
[1] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM journal on imaging sciences, 2009, 2(1):183-202.

[2] Adam W Bojanczyk and Adam Lutoborski. The procrustes problem for orthogonal stiefel matrices[J]. SIAM Journal on Scientific Computing, 1999, 21(4):1291-1304.

[3] Moody T Chu and Nickolay T Trendafilov. The orthogonally constrained regression revisited[J]. Journal of Computational and Graphical Statistics, 2001, 10(4):746-771.

[4] Jan De Leeuw and Willem J Heiser. Convergence of correction matrix algorithms for multidimensional scaling. Geometric representations of relational data, 1977, 735-752.

[5] Bert F Green. The orthogonal approximation of an oblique structure in factor analysis[J]. Psychometrika, 1952, 17(4):429-440.

[6] BF Green and JC Gower. A problem with congruence. In Annual meeting of the psychometric society, Monterey, California, 1979.

[7] Nicholas J Higham. Functions of matrices:theory and computation. Siam, 2008.

[8] John R Hurley and Raymond B Cattell. The procrustes program:Producing direct rotation to test a hypothesized factor structure[J]. Behavioral science, 1962, 7(2):258-262.

[9] Kenneth Lange, David R Hunter, and Ilsoon Yang. Optimization transfer using surrogate objective functions[J]. Journal of computational and graphical statistics, 2000, 9(1):1-20.

[10] Yu Nesterov. A method of solving a convex programming problem with convergence rate o (1/k2)[J]. In Sov. Math. Dokl, 1982, 27:372-376.

[11] Nie Feiping, Zhang Rui, and Li Xuelong. A generalized power iteration method for solving quadratic problem on the stiefel manifold[J]. Science China Information Sciences, 2017, 60(11):112101.

[12] James M Ortega and Werner C Rheinboldt. Iterative solution of nonlinear equations in several variables. volume 30. Siam, 1970.

[13] Haesun Park. A parallel algorithm for the unbalanced orthogonal procrustes problem[J]. Parallel Computing, 1991, 17(8):913-923.

[14] Peter H Schönemann. A generalized solution of the orthogonal procrustes problem[J]. Psychometrika, 1966, 31(1):1-10.

[15] Jos MF ten Berge and Dirk L Knol. Orthogonal rotations to maximal agreement for two or more matrices of different column orders[J]. Psychometrika, 1984, 49(1):49-55.

[16] Xia Yong and Han Yingwei. Partial lagrangian relaxation for the unbalanced orthogonal procrustes problem[J]. Mathematical Methods of Operations Research, 2014, 79(2):225-237.

[17] Zhang Zhenyue and Du Keqin. Successive projection method for solving the unbalanced procrustes problem[J]. Science in China Series A, 2006, 49(7):971-986.
[1] 刘辉, 崔涛, 冷伟. hp自适应有限元计算中一种新的自适应策略[J]. 数值计算与计算机应用, 2015, 36(2): 100-112.
阅读次数
全文


摘要